

ORIENT- NM

<u>Organi</u>sation of the <u>European</u> Research Communi<u>ty</u> on <u>N</u>uclear <u>M</u>aterials

A Coordination and Support Action in Preparation of a Co-Funded European Partnership on Nuclear Materials

This project has received funding from the Euratom research and training programme 2019/2020 under grant agreement No. 899997

Start date of project Duration Reporting period

01/10/2020

30 months 2 - 01/04/2022 - 31/03/2023

Work Package 2 – Vision Paper and Strategic Research Agenda for an EJP on nuclear materials

Deliverable D2.1: Nuclear materials identity cards

Author(s) nan affiliation	ne and	Marjorie Bertolus, CEA	Massimo Angiolini, ENEA	
annation		Marco Cologna, JRC	Pål Efsing, KTH	
		Miguel Ferreira, VTT	Benoit Tanguy, CEA	
		+ TAG members indicated in individual cards		
Date of issue		28/04/2022		
Date of final approval		06/05/2022		
Dissemination	n Level			
PU	Public		X	
CO Confidential, only for partners of the ORIENT-NM Action and the EC			ENT-NM Action and the	

Version	Date	Description
1	28/04/2022	First Release
2	09/05/2022	Final

Disclaimer

This project has received funding from the Euratom research and training programme 2019/2020 under grant agreement No. 899997.

The information contained in this document has been prepared solely for the purpose of providing information about the ORIENT-NM project. The document reflects only the ORIENT-NM consortium's view and the European Commission is not responsible for any use that may be made of the information it contains.

While this publication has been prepared with care, the authors and their employers provide no warranty with regards to the content and shall not be liable for any direct, incidental or consequential damages that may result from the use of the information or the data contained therein. Reproduction is authorised providing the material is unabridged and the source is acknowledged.

Table of contents

Disc	lain	ner	3
Tabl	e o	f contents	4
List o	of a	bbreviations	6
Exec	cuti	ve Summary	8
1. In	tro	duction	9
2. M	eta	Ilic alloys for structural components	10
2.	1	Low-alloy bainitic steels	10
2.	2	Micro-alloy or non-alloy C-Mn steels (base metals and welds)	12
2.	3	Austenitic stainless steels for Gen II & III applications	14
2.	4	Austenitic steels of type 316SS for Gen IV applications	16
2.	5	Martensitic stainless steels	19
2.	6	Cast austenitic stainless steels	20
2.	7	Nickel-based alloys	21
2.	8	Aluminium alloys	27
2.	9	High entropy alloys	29
2.	10	Ferritic / martensitic steels (base metals and welds)	31
2.	11	Alumina Forming Austenitic Steels	33
2.	12	FeCrAI alloys	35
2.	13	Hard facing materials	37
		Duplex austenitic / ferritic steels	
3. Fu	leu	cladding materials	39
3.	1	Chromium coated Zirconium alloys	39
3.	2	ODS steels	41
3.	3	Coated AIM1 steels	42
3.	4	Swelling resistant austenitic steels beyond AIM1	44
3.	5	SiC _f -SiC composites	45
4. Ni	ucle	ear fuel materials	47
4.	1	UO2 fuel for light water reactors	47
4.	2	MOX fuels for LWR	49
4.	3	MOX fuels for fast reactors	51
4.	4	Carbide fuels	53
4.	5	Nitride fuels	55
4.	6	Uranium silicide fuel for LWR	57
4.	7	Uranium silicide fuel dispersed in Al matrix for Material Test Reactors	59

	4.8	Uranium-Molybdenum fuel dispersed in AI matrix for Material Test	
		Reactors	61
	4.9	Liquid fuels: molten salts	63
	4.10	Minor actinide bearing driver fuels for fast reactors	67
	4.11	Minor actinide bearing blanket fuels	69
5.	Conc	rete	71
	5.1	Temperature effects on delayed deformation and damage	72
	5.2	Corrosion	74
	5.3	Endogenous reactions	76
	5.4	Irradiation	78
	5.5	Reactive transport processes in concrete	80
	5.6	Voids and defects in steel-concrete structures	82
	5.7	Microbial activity	84
	5.8	Concrete in LOCA conditions	86
	5.9	Seismic performance and consequence of impacts	88
	5.10	Steel-concrete systems performance	90

List of abbreviations

AAR	Alcali Activated Materials
ACR	Alkali-Carbonate Reaction
ACS	Above core structure
AFCEN	Association française pour les règles de conception, de construction et de
	surveillance en exploitation des matériels des chaudières électro-nucléaires
ALD	Atomic Layer Deposition
ASR	Alkali-Silica Reaction
BN	Beloyarsk nuclear plant
BWR	Boiling Water Reactors
CANDU	CANada Deuterium Uranium reactor
CCA	compositionally complex alloys
C/M	Carbon-to-Metal (ratio)
CVD	Chemical Vapour Deposition
DB	Design-basis
DBTT	Ductile Brittle Transition Temperature
DEC	Design Extension Conditions
DEF	Delayed Ettringite Formation
dpa	Displacement per atom
EPR	European Pressurized Reactor
FIMA	Fissions per Initial Metal Atom
Gen II	Second Generation (of nuclear reactors)
Gen III/III+	Third (plus) Generation (of nuclear reactors)
Gen IV	Fourth Generation (of nuclear reactors)
GMAW	gas metal arc
GTAW	gas tungsten arc
HAZ	Heat Affected Zone
HEA	High Entropy Alloy
HIP	Hot Isostatic Pressing
IASCC	Irradiation-Assisted Stress Corrosion Cracking
ID	Identity
JOG	Joint Oxide-Gaine
LEU	Low Enrichment Uranium
LME	Liquid Metal Embrittlement
LOCA	Loss of coolant accident
LTA	Lead Test Assembly
LTO	Long-term operation
LWR	Light Water Reactor
MA	Minor Actinides
ML	Machine learning
MOX	Mixed Oxides (fuel)
MSR	Molten salt reactor
MTR	Materials Testing Reactor
NDT	Non-destructive test(ing)
O/M	Oxygen-to-Metal (ratio)

ODS PCMI	Oxide Dispersion Strengthening /Strengthened Pellet-cladding mechanical interaction
PLD	Pulsed Laser Deposition
PGM	Platinum Group Metal
PWR	Pressurized Water Reactors
RIA	Reactivity Insertion Accident
ROG	Rection Oxyde Gaine
SC	Steel-concrete
SFR	Sodium Fast Reactor
SG	Steam Generator
SMR	Small and medium size Modular Reactor
SPS	Spark Plasma Sintering
SS	Stainless steels
TIG	Tungsten Inert Gas
WAR	Weak Acid Resin

WWER Water-Water Energetic Reactor

Executive Summary

This document contains the nuclear materials identity cards that were prepared by the international technical advisory group (TAG) of the ORIENT-NM project to help the identification and prioritization of materials issues to be investigated in a future partnership on nuclear materials. These ID cards indicate the (potential) use of the various materials, their degradation mechanisms in this use, as well as the data available and the gaps in knowledge.

TAG expert groups were set up for all materials families and produced materials identity cards for the following ones:

- Metallic alloys for structural components
- Fuel cladding materials
- Nuclear fuel materials
- Concrete.

This is a technical annex to the Strategic Research Agenda written in the project.

1. Introduction

One of the main objectives of the ORIENT-NM project is to produce a strategic research agenda exposing the industrial and research needs concerning nuclear materials for all nuclear fission reactor generations and the activities to perform to reach the objectives identified.

In support of the identification and prioritization of materials issues to investigate, the present document contains the nuclear materials identity cards that were prepared by the international technical advisory group (TAG) of the ORIENT-NM project.

TAG expert groups were set up for all materials families and produced materials identity cards for the following ones:

- Metallic alloys for structural components
- Fuel cladding materials
- Nuclear fuel materials
- Concrete.

For the first three categories, each card indicates, for the main materials used or envisaged to be used in nuclear reactors, the (potential) use of the various materials, their degradation mechanisms in this use, as well as the data available, the open issues and the gaps in knowledge. For concrete, the cards indicate for the various degradation mechanisms the consequences of this mechanisms and the R&D efforts made and needed on materials aspects monitoring and structural modelling.

This is a technical annex to the Strategic Research Agenda written in the project.

2. Metallic alloys for structural components

Coordinators: Pål Efsing, KTH, Benoit Tanguy, CEA

2.1 Low-alloy bainitic steels

Compositions of interest	(16MND5, 18MND5, SA533/508, 22NiMoCr37, 20MnMoNi55 A302B, 15Kh2MFA, 15Kh2NMFA) C(%)<0.2;Mn(%) 1.15-1.55; Mo(%) 0.45-0.57; Ni(%) 0.5-0.8; Si(%) 0.15-0.3, Cu(%)<0.2 [WWER materials Cr (%) 1.2-3.00 ; V (0.10-0.35)]			
Type of reactor	Large reactors SMR (if applicable)			
Light water reactor	Х		X	
Heavy water reactor	Х		Х	
Sodium-cooled fast reactor				
Lead alloy- fast cooled reactor				
Gas-cooled fast reactor				
(Very) High Temperature Reactor				
Water-cooled supercritical reactor	Х			
Molten salt reactor				
Other (specify here)				
Fusion				
Component type	Reactor Pressure Ves	sel, steam gen	erator vessel,	
	secondary and prima	ry piping, valve	es, pumps	
Method of manufacture	Forging, hot-rolling			
Assembly method	Welding			
Target operating environment	Up to 0.2 dpa for LWR reactor, 270-320°C (up to			
	390ºC (Magnox))			
Properties that make the material sui	table for the target en	vironment		
Fracture toughness against fast neutr	on irradiation and the	ermal ageing, r	nechanical	
properties at temperature, applicable	corrosion properties			
ease of fabrication, good weldability,	availability, cost, low	activation		
Open questions to consider	•			
Creep at high temperature, DBTT (Ni-N	/In-Si role), segregation	n, fabrication o	f large ingots,	
additive manufacturing, thermal agein	g at higher temperatu	res and longer	duration	
(thermal embrittlement). Embrittleme	nt for low neutron flux	and non-hard	ening	
embrittlement.				
References:				
Kolluri, M., ten Pierick, P., Bakker, T., Straathof, (2021). Influence of Ni-Mn contents on the eml relevant for LTO beyond 60 years. Journal of Nu	brittlement of PWR RPV mo	del steels irradiate		
https://doi.org/10.1016/j.jnucmat.2021.15303	6			
Property improvements required or in	1			
Homogeneity of the ingots				
Iron chromium alloys with improved long term behaviour				
Level of technological readiness 9 Quality of 100 % use				
Other observations	I		1	

List of identity card authors

Pal Efsing (KTH, Vattenfall), Benoit Tanguy (CEA), Murthy Kolluri (NRG), Marta Serrano (CIEMAT)

2.2 Micro-alloy or non-alloy C-Mn steels (base metals and welds)

Compositions of interest	C-Mn (A48, A52),	C-Mn micro-alloyed	(P355)	
Type of reactor	Large reactors	SMR (if applicable)	Notes	
Light water reactor	х		PWR 900, 1300, N4, EPR	
Heavy water reactor				
Sodium-cooled fast reactor				
Lead alloy- fast cooled reactor				
Gas-cooled fast reactor				
(Very) High Temperature Reactor				
Water-cooled supercritical reactor				
Molten salt reactor				
Other (specify here)				
Fusion				
Component type	Main secondary p supply, turbine by	piping (main steam sy pass system)	vstem, feedwater	
Method of manufacture	Forged, stretched			
Assembly method	Manual or orbital welding	TIG welding, coated	electrode	
Target operating environment	280°C, 80 bar			
Properties that make the material	suitable for the ta	rget environment		
- Individual Kv > 47 J at -20°C		-		
- Average Kv > 60 J at 0°C				
- Average Kv > 100 J at 20°C				
- Re mini > 355 MPa				
References : RCC-M. Design and Constru- Edition 2020	ction Rules for Mechar	nical Components of PWR	Nuclear Islands –	
Open questions to consider				
- Normal decrease in resilience obse	erved in Heat Affeo	ted Zone (HAZ)"		
Optimal chemical composition forIdeal welding conditions for compl		•	vith properties	
References:				
Jorge and al. Microstructure characterization and its relationship with impact toughness of C–Mn and high strength low alloy steel weld metals – a Review. Journal of Materials Research and Technology 10 (january 2021): 471-501. <u>https://doi.org/10.1016/j.jmrt.2020.12.006</u> . Wang, X.L., Y.R. Nan, Z.J. Xie, Y.T. Tsai, J.R. Yang, C.J. Shang, Influence of welding pass on microstructure and toughness in the reheated zone of multi-pass weld metal of 550 MPa offshore engineering steel, Materials Science and Engineering: A702 (august 2017): 196-205. <u>https://doi.org/10.1016/j.msea.2017.06.081</u> . Song, H. Y., G. M. Evans, S. S. Babu, Effect of microstructural heterogeneities on scatter of toughness in multi-pass weld metal of C–Mn Steels,. Science and Technology of Welding and Joining 19, no 5 (July 2014): 376-84. <u>https://doi.org/10.1179/1362171814Y.0000000194</u> .				
Property improvements required or in progress				
- Compliance with the required tens	sile and resilience p	properties		
- Zero defects in welds				
- Continuous monitoring of welding parameters				
References:				
Koen Faes and Jürgen Feyaerts (Belgian welding institute - IBS), Axel Vlaminck et Eli Reekmans (Oqton Belgium)				
In live quality control of welding processes – To detect weld quality during or just after welding, Belgian welding institute (2020)				
Level of technological readiness	7-8	Likeliness of	100 %	
	, 0	Lincinic35 Of	100 /0	

		use		
Other observations				
- International feedback				
- Other industries feedback (oil and gas)				
List of identity card authors				
E. Molinié (EDF), P. Todeschini (EDF), B. Yriex (EDF), F. Villaret (EDF), J. Odinot (EDF)				

304, 316, 347 (Nb stabilized), 321 (Ti stabilized) **Compositions of interest** SMR (if applicable) Type of reactor Large reactors Х Х Light water reactor Heavy water reactor Sodium-cooled fast reactor Lead alloy- fast cooled reactor Gas-cooled fast reactor (Very) High Temperature Reactor Water-cooled supercritical reactor Molten salt reactor Other (specify here) Fusion Reactor Internals, all primary piping, vessel cladding Component type Method of manufacture Forging/machining/ rolling/welding Assembly method welding Target operating environment Doses up to 120 dpa, deionized water, 350°C (up to 400°C) Properties that make the material suitable for the target environment Good mechanical properties at low and high temperature including creep and creep/fatigue - Structural stability during ageing - Weldability Ability to be fabricated Excellent corrosion behaviour in water environment (LWRs applications) From these investigations, database suitable for 40 years lifetime. Material codification: RCCM, DIN, ASME **Open questions to consider** Behaviour under corrosive environment (Stress Corrosion Cracking, Irradiated Assisted Stress Corrosion Cracking) -Swelling at high doses Combination of thermal and irradiation for creep Phase stability at high doses combined with deformation (martensite transformation) Environmental effect on fatigue, thermal fatigue Ageing & Plant Life Management Life assessments of components operated an load-following mode How to best qualify components additive manufacturing; Properties for components supplied by additive manufacturing: compared to conventional manufacturing (tensile, fracture toughness, fatigue, creep etc., pristine and service exposed) References: E. Lemaire, N. Monteil, N. Jardin, M. Doll, Contribution of Materials Investigations and Operating Experience of Reactor Vessel Internals to PWRs' Safety, Performance and Reliability O.K. Chopra, A.S. Rao, A review of irradiation effects on LWR core internal materials - Neutron Embrittlement, Journal of Nuclear Materials 412 (2011) 195-208 Property improvements required or in progress -weld behaviour

2.3 Austenitic stainless steels for Gen II & III applications

Accurate multiscale modelling for long-term structural performance with respect to degradation and cracking (swelling, IASCC, fatigue)
 Active survey for additive manufacturing linked with design opportunities: reducing machining, area with stress concentration, weldments...
 Level of technological readiness 8 (LWRs-more than 60 years life duration)
 Other observations
 List of identity card authors
 P. Efsing (KTH, Vattenfall), B. Tanguy (CEA), Ł. Kurpaska (NCBJ)

2.4 Austenitic steels of type 316SS for Gen IV applications

Compositions	2161 (NI) 2161 (N	1)-IC and 2161		
of interest	316L(N), 316L(N)-IG and 316L1) X2CrNiMo17-12-2(N) nitrogen controlled (base metals) for main			
or interest	primary circuit components – "316L(N)", A3.1S, properties Group in			
	RCC-MRx, 316L(N)-IG is the low activation ITER Grade for fusion			
	2) X2CrNiMo17-12-2 / X2CrNiMo17-12-3 / X2CrNiMo18-14-3 (base			
	,	for main primary circuit components A3.3S – "316L"		
	-		MRx Section III Tome	
Type of reactor		Large reactors	SMR (if applicable)	
Light water reacto	or			
Heavy water reac	tor			
Sodium-cooled fa		Х		
Lead alloy- fast co	oled reactor	Х		MYRRHA, Alfred
Gas-cooled fast re		(X)		Allegro project
(Very) High Temp	erature Reactor			
Water-cooled sup	percritical			
reactor				
Molten salt reacted	or			
Other (specify he	re)	Target of		
		European		
		Spallation Source		
Fusion		X		316L(N)-IG is ITER Grade
Component type		Fission: Vessels/Co	re Support: irreplacea	able
		Above Core Structu	ire (ACS): possibly rep	blaceable
		Pipes, Intermediate	e Heat Exchanger, cor	e internals
		Fusion: vacuum vessel and other vessels, Test Blanket Modules		
Method of manu	facture	Forging/machining	/ rolling/welding/lam	inated
			uring (development)	
Assembly metho	d	Welded		
Target operating	environment	• Fission = Gen IV: Until 550°C. Sodium & lead		
		environment		
		-	ron energy + corrosiv	
			e used for ITER vacuu	
			at limit its further us	
		fusion reactors (due to long term activation product		
		and irradiation swelling at high doses)		
Properties that make the material suitable for the target environment				
The 316SS stainless steels have evolved for 316L is a low carbon version and 316L(N) is a further development for the French SFR programme with tighter restrictions. 316L/316L(N)				
		h SFR programme wit	th tighter restrictions	. 316L/316L(N)
is probably the m				
Specifications of 3	316L(N) resulted f	rom previous R&D ar	nd feedback for SFR to	o obtain the

best compromise between different required properties:

- Good mechanical properties at low and high temperature including creep and creep/fatigue;
- Structural stability during ageing;
- Weldability;

- Ability to be fabricated;
- Excellent behaviour in sodium (SFR applications)
- From these investigations, data base suitable for 40 years lifetime.

Material codification in RCC-MRx (ed. 2018): alloy A3.1S 316L(N) and A3.3S for 316L

References:

- P. Yvon, Structural materials for GENIV Nuclear Reactor, chap 17 (F. Dalle et al.) Conventional austenitic steel as out of core materials for GENIV nuclear reactor, Elsevier 2017

- Kimura and al.: Creep strength and microstructural evolution of type 316L(N) stainless steel, ECCC creep conference, May 2014

- D. Bonne and al.: Codification of 316L(N) in RCC-MR code- Experience and prospective project, PVP2010 - M. Blat and al.: Getting the most from feedback on the past French SFR structural materials for ASTRID

components, ICAPP 2015, Paper 15438 Open questions to consider

- Evolution of the data for 60 years life duration: ageing, creep, creep-fatigue, ratcheting, thermal striping.
- Low dose irradiation (<1dpa) for 60 years life duration (with He production from transmutation (ACS));
- Life assessments of components operated an load-following mode
- Behaviour in accidental conditions: higher temperature, different loading
- Weldability: new processes, new filler metal: long term behaviour
- How to best qualify components additive manufacturing;
- Properties for components supplied by additive manufacturing: compared to conventional manufacturing (tensile, fracture toughness, fatigue, creep etc., pristine and service exposed)

LFR specific

• Compatibility with liquid lead and lead-bismuth eutectic for base material and weld (liquid -metal embrittlement, corrosion, erosion

References:

- KF. Nilsson and al.: EERA JPNM Task Force 60 years operational life future reactors: review and roadmap for future activities (2017)

- M. Blat and al.: Important parameters to take into account to get reliable structural materials data for 60 years design duration, ICAPP 2016, paper 16522

- J. Aktaa and al.: Effect of hold time and neutron irradiation on the low cycle fatigue behavior of 316 CL and their consideration in a damage model, Nuclear Engineering and Design 213 (2002) 111-117

Property improvements required or in progress

Gen4/SFR :

- Creep and creep fatigue modelling: robust long-term prediction needs more comprehensive approach. Creep/fatigue: test with more realistic creep dwell to agree with operation plant deformation mechanism.
- Alternative welding processes; to obtain better properties after ageing in weld metal (no filler metal or filler metal without or very ferrite content) but also to obtain low hardness in HAZ and weld area. Final objective is to reduce or suppress weld coefficient
- Low dose irradiation and materials embrittlement: representative irradiation (combined irradiation flux and long-term ageing)
- Assess the effect of lead, lead-bismuth on mechanical properties
- Corrosion and erosion data and mechanisms in contact with liquid lead or lead-bismuth eutectic. .

General needs:

• Accurate multiscale modelling for long-term structural performance with respect to

degradation and cracking

- Active survey for additive manufacturing linked with design opportunities: reducing machining, area with stress concentration, weldments, ...
- Life assessment of welded joints

Level of technological readiness	8 (SFR – 40 years life duration)	Likeliness of use	100 %
Other observations			
List of identity card authors			
M. Blat-Yrieix (EDF R&D), C. Petesc	h (CEA), M. Serrano (CIEMAT), L. Kurpaska	a (NCBJ), KF.
Nilsson (JRC)			

2.5 Martensitic stainless steels

Compositions of interest					
Turne of reactor	and X12 Cr 13	CNAD /:f	Notos		
Type of reactor	Large reactors	SMR (if applicable)	Notes		
Light water reactor	x		PWR 900, 1300, N4, EPR		
Heavy water reactor					
Sodium-cooled fast reactor					
Lead alloy- fast cooled reactor					
Gas-cooled fast reactor					
(Very) High Temperature Reactor					
Water-cooled supercritical reactor					
Molten salt reactor					
Other (specify here)					
Fusion					
Component type	valve stems, bolt	s and nuts / stea	m generator tie		
	rods	· · · · · , · · · ·	0		
Method of manufacture	Stretched				
Assembly method	N/A				
Target operating environment	325°C, 155 bar				
Properties that make the material		get environment			
Stress corrosion cracking, fatigue, v			e		
References :	,		-		
B. Yrieix, M. Guttmann, Aging between 300) and 450 °C of wrought	martensitic 13-17 % C	r stainless steels,		
Materials Science and Technology, Februar	ry 1993				
Open questions to consider					
- Chemical composition optimization					
- Minimum temperature for therm		-	mical composition		
- Up to date modelling to simulate	mechanical properti	es			
References:					
J.M. Boursier, D. Buisine, M. Fronteau, Y. N	• • • •				
martensitic stainless steels, minutes of the E. Molinié, R. Tampigny, F. Foct, P. Dignoco		-			
of the Fontevraud 7 international seminar					
Property improvements required					
- To avoid replacement during lifet	ime (60 or 80 years)				
- steelmakers works during last 25	years				
References:					
Synthesis of AFCEN study, SG02.097, 2002, Substitution materials for X6 CrNiCu 17-04 steel for main primary and					
main secondary systems valve stems of PWR power plants					
Level of technological readiness	7-8	Likeliness of use	100 %		
Other observations					
- International feedback					
- Other industries feedback (oil and gas)					
List of identity card authors					
E. Molinié (EDF), B. Yrieix (EDF)					

2.6 Cast austenitic stainless steels

Compositions of interest	Ni-Cr-Mo			
Type of reactor	Large reactors	SMR (if applicable)	Notes	
Light water reactor	X	X		
Heavy water reactor				
Sodium-cooled fast reactor	Х			
Lead alloy- fast cooled reactor				
Gas-cooled fast reactor				
(Very) High Temperature Reactor				
Water-cooled supercritical reactor				
Molten salt reactor				
Other (specify here)				
Fusion				
Component type	Valve and pump c	asing, elbows, fittings.	Internals	
	core components			
Method of manufacture	Casting			
Assembly method	Welding (narrow	gap)		
Target operating environment	Full T and P for pr	imary circuit + irradiat	ion (less	
	than 1 dpa)			
Properties that make the material su	itable for the target	t environment		
Equivalent chromium (Cr%+Si%+Mo%) < 23%			
10 < ferrite (%) < 25				
Low content in inclusions, without cas				
Mechanical properties (Charpy impact	energy and J-R cur	ves)/ ease of manufac	turing	
including welding / good resistance to	corrosion			
Open questions to consider				
Thermal ageing (spinodal decompositi		mechanical properties		
Combined effect of thermal & irradiat	ion ageing			
References:				
[1] O.K. Chopra, A.S. Rao, Methodology for estimating thermal and neutron embrittlement of cast austenitic stainless steels during service in light water reactors, J. Pressure Vessel Techno. 138 (2016)				
https://doi.org/10.1115/1.4031909 , 1-24				
[2] Y.Miura, T. Sawake, K.Betsuyaku, T. Arai, Th			tic stainless	
steels, in : proccedings of ASME 2017 Pressure https://doi.org/10.1115/PVP2017-65959	and Vessel Piping Confe	erence, 2017, p. 1A,		
[3] S. Saillet, P. Le Delliou, Prediction of J-R cur	ves and thermoelectric	power evolution of cast aug	stenitic stainless	
steels after very long-term aging (200,00 h) at				
(2020), https://dio.org10.1016/j.jnucmat.2020				
Property improvements required or i				
Thermal regeneration: thermal ageing	kinetic after regen	eration – impact on m	echanical	
properties	100°C (CED	+)		
Thermal ageing for operating tempera			1000/	
Level of technological readiness	8	Likelyness of use	100%	
Other observations	on anotion and the sur	mal againg for an arrest	22	
International feedback on thermal reg		mai ageing for operati	ng	
temperature > 400°C (Energy, Oil and Gas)				
List of identity card authors				
Pal Efsing (KTH; Vattenfall), B. Tanguy (CEA), E. Molinié (EDF), M. Blat (EDF).				

2.7 Nickel-based alloys

Compositions of interest Type of reactor	Inconel 617, 625, 690 718, Hastelloy C276 Alloy 800, Incolloy 800 H, Nimonic Alloy 90, Alloy PE16 Alloy 230, Haynes 230, UNS N06230, Alloy 617 Incolloy 800: Limiting Chemical Composition, (% by Weight) Ni=30.0-35.0; Cr=19.0-23.0; Fe=39.5min.; C=0.10max.; Mn=1.50max.; S=0.015max.; Si=1.0max.; Cu=0.75max.; Al=0.15-0.60; Ti=0.15-0.60 Alloy 230: Limiting Chemical Composition, (% by Weight) Ni=balance; Cr=20.0-24.0; Co=5.0 max.; Fe=3.0 max.; Mo=1.0-3.0; W=13.0-15.0; C=0.05-0.15.; Mn=0.30-1.00; S=0.015 max.; Si=0.25-0.75; Al=0.20- 0.50; P=0.030 max.; La=0.005-0.050; B=0.015 max Large reactors SMR (if applicable) Notes		
Light water reactor	X	X	Notes
Heavy water reactor	X	X	SG tubing
Sodium-cooled fast reactor	X		Setubilig
Lead alloy- fast cooled reactor			
Gas-cooled fast reactor			
(Very) High Temperature Reactor	Х		
Water-cooled supercritical reactor	X		
Molten salt reactor	Х		
Other (specify here)			
Fusion	Х		
Component type	Steam generator turbine and tubing, reactor pressure vessel head/penetration, piping safe ends, dissimilar metal welds, fasteners and brackets, fuel alignment pins, springs in fuel elements. Intermediate heat exchangers Resistance-heated alloy 230: superheater tubes (used to produce about 885°C high-pressure steam)		
Method of manufacture		cold-drawing, welding	
	tubes, hot-work		
Assembly method	Welding		
Target operating environment	Similar than stainless steels Fission reactor, CANDU, heavy water - water cooled: 265-320°C@10.5 MPa		
Properties that make the material s	uitable for the tai	rget environment	
High-temperature strength, ductilit		rosion resistance (incl	uding stress
corrosion cracking), heat resistance, High corrosion resistance at high ten Resistance to oxidation, carburizatio (816°C) References: Pearl, W.L., Brush, E.G., Gaul, G.G. and Leistik	nperature n, and sulfidation		
Superheat Reactor Environment. <i>Nuclear Ap</i> , K. Siva Rama Krishna Rao, K.Praveena, Manu International Journal of Science Engineering	plications, 3(7), pp.41 facturing of Incoloy- 8 and Advance Technol	8-432. 300 Tubes Nuclear Steam G ogy, IJSEAT, Vol 2, Issue 9, _I	enerator Tubes,

Laboratory, 7-10 October 2013, N	EA/NSC/W	PFC/DOC(20	15)9	
Open questions to conside				
- Alloy Composition Search in weld materials (?)				
- Swelling at high doses				
- Gamma bis precipitates fo	rmation	under irra	diation and temperature	
			a loss in strength as compa	ared with the low
temperature irradiations at				
	•			
General needs:				
	lling for I	ong-term	structural performance with	respect to
degradation and cracking			a the second	
-		-	ed with design opportunities	s: reducing
machining, area with stress				coarchac
e .			alloys through composition	
	-	-	emperature for VHTR applic	Lations
-effect of impure environme References:	ent on cr	ack growt	1 TOT AllOY 617.	
	coccing the		adiation Damage on Ni-base Alloy	s for the Bromethous
Space Reactor System, LM-06K03		Ellects of K	adiation Damage on Ni-base Alloys	s for the Prometheus
Property improvements re		r in progre	SS	
Weldability for modern allo	ys			
Multicomponent 2-phase a	loys and	thermody	namics for increasing meltir	ng temperature
using ab-initio methods.			C C	
High temperature strength				
References:				
K. Siva Rama Krishna Rao, K. Prave	eena, Manu	ufacturing of	Incoloy- 800 Tubes Nuclear Steam	n Generator Tubes,
	ngineering	and Advanc	e Technology, IJSEAT, Vol 2, Issue 9	9, ISSN 2321-6905,
p.426 – 431.	inoss	8	Likeness of use	80%
Level of technological read Other observations	mess	0	LIKENESS OF USE	80%
Other observations				
List of identity card author	-			
List of identity card author		fcing (VTU	Vattenfall), Benoit Tanguy (
(RATEN ICN), Łukasz Kurpas			Valleman, benolt ranguy	(CEA), D. Lucan
(RATENICIN), Łukasz Kurpas	Ka (INCDJ)		
Compositions of interest	Alloy	20 Have	es 230, UNS N06230	
compositions of interest	-	-	cal Composition, (% by We	pight) Ni-halanco.
		-	b=5.0 max.; Fe=3.0 max.; Mc	
		-		•
15.0; C=0.05-0.15.; Mn=0.30-1.00; S=0.015 max.; Si=0.25-0.75;				

	15.0, C=0.05-0.15., Wii=0.50-1.00, 5=0.015 max., 5i=0.25-0.75,				
	Al=0.20-0.50; P=0.030 max.; La=0.005-0.050; B=0.015 max.				
Type of reactor		Large reactors	SMR (if applicable)		
Light water reactor					
Heavy water reactor					
Sodium-cooled fast reactor					
Lead alloy- fast cooled reactor					
Gas-cooled fast reactor					
(Very) High Temperature Reactor		Х			
Water-cooled supercritical re	eactor				
Molten salt reactor					
Other					

Fusion	
Component type	Intermediary Heat Exchangers, Resistance-heated alloy 230
	superheater tubes. Used to produce about 1625°F (885°C)
	high-pressure steam.
Method of manufacture	Excellent forming and welding characteristics. It may be
	forged or otherwise hot-worked, providing it is held at 2150°F
	(1177°C) for a time sufficient to bring the entire piece to
	temperature. As a consequence of its good ductility, alloy 230
	is also readily formed by cold-working. All hot- or cold-worked
	parts should be annealed and rapidly cooled in order to
	restore the best balance of properties.
Assembly method	The alloy can be welded by a variety of techniques, including
· · · · · · · · · · · · · · · · · · ·	gas tungsten arc welding (GTAW), gas metal arc welding
	(GMAW), and resistance welding.
Target operating	Alloy 230 exhibits excellent retained ductility after long-term
environment	thermal exposure at intermediate temperatures. It does not
	exhibit sigma phase, mu phase, or other deleterious phase
	formation even after 16,000 hours of exposure at
	temperatures from 1200 to 1600°F (649 to 871°C). Principa
	phases precipitated from solid solution are all carbides.
Properties that make the n	naterial suitable for the target environment
	hermal stability, oxidation resistance, thermal cycling resistance
and fabricability of any maj	
	strength, outstanding resistance to oxidizing environments up to
	ged exposures, premier resistance to nitriding environments and
	al stability. It is readily fabricated and formed, and is castable
_	nclude lower thermal expansion characteristics than most high
	a pronounced resistance to grain coarsening with prolonged
exposure to high temperati	
References:	iles.
	- Inconel Alloy N06230 – www.specialmetals.com.
	urement and Initial Characterization of Alloy 230 and CMS Alloy 617, INL/EXT
06-11290, 2006.	
	, Oxidation Kinetics of Haynes 230 Alloy in Air at Temperatures, between 650
and 850°C, Journal of Power Sour	ces 159, p. 641–645, 2006. ., YI, L., HONGCHAO, K., HENGZHI, F., Isothermal Oxidation Behavior of Haynes
	Aetal Materials and Engineering, 37(9), p. 1545-1548, 2008.
Open questions to conside	
	er temperatures results in almost continuous precipitation along
	coarse particles being also randomly present within the grains
-	on the microstructure were most pronounced at the highest tes
-	ain boundary precipitation was continuous with no evidence o
discrete particles being pre	<i>,</i>
References:	
	Strang, Microstructural Degradation of Haynes 230 Combustor Hardware
	Ference Materials for Advanced Power Engineering 2006.
	CHING, A., SWANK, W. D., High Temperature Behavior of Candidate VHTR Hea of the 4-th International Topical Meeting on High Temperature Reacto

Technology HTR, September 28-Octomber 1, 2008.

Property improvements required or in progress

- High temperature microstructure

References:					
G. Marchant, G. McColvin, A. Strang, Microstructural Degradation of Haynes 230 Combustor Hardware,					
Proceedings of the 8th Liège Conference Materials for Advanced Power Engineering 2006.					
Level of technological readiness	6-7	Likeliness of use			
Other observations					
-					
List of identity card authors					
Dumitra Lucan (RATEN ICN)					

	Alloy 617 Limiting Chemical Composition, (% by Weight)			
	Ni=44.5 min.; Cr=20.0-24.0; Co=10.0-15.0; Fe=.3.0			
	max.; Mo=.8.0-10.0; C=0.05-0.15.; Mn=1.0 max.;			
	nax.; Si=1.0 max.; Al=0.8-1.5;			
	Cu=0.5 max.; B=0.006 max.			
Type of reactor Large reactors	SMR (if applicable)			
Light water reactor	· · · · ·			
Heavy water reactor				
Sodium-cooled fast reactor				
Lead alloy- fast cooled reactor				
Gas-cooled fast reactor				
(Very) High Temperature Reactor X				
Water-cooled supercritical reactor X				
Molten salt reactor				
Other				
Fusion				
Component type Intermediary Heat Exch	angers			
Method of manufacture Extrusion				
	M. C. Zhang, Manufacture process			
	rheater tubes for ultra-supercritical			
S4-369-S4-374	earch Innovations, 18:sup4, (2014),			
Assembly method Alloy 617 has a g	ood fabricability. Forming,			
	g are carried out by standard			
-	el alloys. Techniques and			
equipment for some o	equipment for some operations may be influenced			
by the allov's strength a	by the alloy's strength and work-hardening rate			
Target operating environment482-700°C@35.5 MPa				

- a high degree of resistance to oxidation and carburization at high temperatures. Alloying elements, along with the molybdenum content, also enable the alloy to withstand many wet corrosive environments.

References:

Physical Constants and Thermal Properties – Inconel Alloy 617 – www.specialmetals.com.

https://www.energy.gov/ne/articles/new-alloy-material-approved-use-high-temperature-nuclear-plants, 24.05.2021.

TOTEMEIER, T., C., REN, W., Procurement and Initial Characterization of Alloy 230 and CMS Alloy 617, INL/EXT-06-11290, 2006.

Open questions to consider

- low cycle fatigue, creep crack growth, biaxial fatigue

References:

Ren, W., Swindeman, R. W., Assessment of Existing Alloy 617 Data for GEN IV Materials Handbook, ORNL/TM-2005/510, GenIV Nuclear Energy Systems, 2005.

Wright, R., Simpson, J., Wertsching, A., Swank, W. D., High Temperature Behavior of Candidate VHTR Heat Exchanger Alloys, Proceedings of the 4-th International Topical Meeting on High Temperature Reactor Technology HTR, September 28-Octomber 1, 2008.

Property improvements required or in progress

- manufacture homogeneity

References :

H. Jiang, J. X. Dong & M. C. Zhang, Manufacture process design of Inconel 617B superheater tubes for ultrasupercritical power plants, Materials Research Innovations, 18:sup4, (2014), S4-369-S4-374.

Level of technological readiness	0	Likeliness of use	80-90%
Other observations			

List of identity card authors

Dumitra Lucan (RATEN ICN)

Compositions of interest	Alloy 800, Incoloy 800 (UNS N08800, W. Nr.			
	1.4876) Nickel-iron-chromium alloy			
	Limiting Chemical Composition, (% by Weight)			
	Ni=30.0-35.0; Cr=19.0-23.0; Fe=39.5min.; C=0.10max.;			
	Mn=1.50max.; S=0.015max.; Si=1.0max.;			
	Cu=0.75max.; Al=	0.15-0.60; Ti=0.15-0.6	0	
Type of reactor	Large reactors	SMR (if applicable)	Notes	
Light water reactor				
Heavy water reactor	Х		SG tubing	
Sodium-cooled fast reactor				
Lead alloy- fast cooled reactor				
Gas-cooled fast reactor				
(Very) High Temperature Reactor				
Water-cooled supercritical reactor				
Molten salt reactor				
Other				
Fusion				
Component type	Structural applica	tion in steam generate	ors' tubing;	
Method of manufacture	Extrusion for tube	es. Products: pipe, tube	e, fitting,	
	flange, sheet, strip, plate, round bar, flat bar, fastener,			
	forging stock, hexagon and wire			
Assembly method	TIG			
Target operating environment	Fission reactor, CANDU, heavy water - water cooled:			
	265-320°C@10.5 MPa;			
Duene with a thirt weater the weater take				

Properties that make the material suitable for the target environment

Corrosion resistance (including stress corrosion cracking), heat resistance, rupture and creep strength, resistance to oxidation, carburization, and sulfidation and stability for service up to 1500°F (816°C).

References :

K. Siva Rama Krishna Rao, K.Praveena, Manufacturing of Incoloy- 800 Tubes Nuclear Steam Generator Tubes, International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 9, ISSN 2321-6905, p.426 – 431.

Open questions to consider

- The elevated temperatures irradiations cause a loss in strength as compared with the low

temperature irradiations at equivale	ent fast fluend	ce			
References:					
Angeliu, T., Ward, J., Witter, J., Assessing the Effects of Radiation Damage on Ni-base Alloys for the Prometheus					
Space Reactor System, LM-06K033, 2006.					
Property improvements required or	r in progress				
- High temperature strength					
<u>References</u> :					
K. Siva Rama Krishna Rao, K. Praveena, Man	ufacturing of Inc	oloy- 800 Tubes Nuclear Steam Ge	nerator Tubes,		
International Journal of Science Engineering	and Advance Te	chnology, IJSEAT, Vol 2, Issue 9, IS	SN 2321-6905,		
p.426 – 431.					
Level of technological readiness	8-9	Likeliness of use	90%		
Other observations	Other observations				
-					
List of identity card authors					
D. Lucan (RATEN ICN)					

2.8 Aluminium alloys

Compositions of interest	of interest 2XXX, 5XXX, 6XXX and 8xxx series			
Type of reactor		Large reactors	SMR (if applicable)	Notes
Light water reactor				
Heavy water reactor				
Sodium-cooled fast reactor				
Lead alloy- fast cooled reactor				
Gas-cooled fast reactor				
(Very) High Temperature Reactor				
Water-cooled supercritical reacto				
Molten salt reactor				
Other (specify here)		Х		Research reactors
Fusion				
Component type	Pre	ssure vessels. lo	w pressure tanks, con	necting pipes.
			ures, beam-port nozzl	
			lside irradiation faciliti	
		l cladding		
Method of manufacture		ging, rolling		
Assembly method			eam, MIG, Friction Stir	welding
Target operating environment			nal thermal fluence of	
raiget operating environment			at temperature < 100	
	-	ucture		
			nal thermal fluence of	10^{22} n/cm ² at
	-			
	temperature ranging from 100°C to 200°C for the core structure			
Properties that make the materia			rget environment	
 Very high thermal neutron tra 			-	
 water corrosion resistance 	inspu			
 mechanical properties (<75-10 	ဂဂႋဂ)			
 formability and relatively easy 	-			
 high tolerance to radiation eff 		-	at amhient temperati	1res (<75-100°C)
 irradiation swelling resistance 		when in adiated	at ambient temperate	ares (<75-100 C)
References:				
K. Farrell, "Performance of Aluminum in I	Resea	rch Reactors", com	prehensive nuclear materia	ls. Elsevier, chapter
5.07, pp 143-177, 2012		,		,,,
D. J. Alexander, "The Effects of Irradiation		•		
and Weldments", pp. 1027- 1044 in Effec				posium, ASTMSTP
1325, Amer. Sot. for Testing and , Mater.	, ame	er. Sot. for Testing a	iu water., 1999	
Open questions to consider	char	ical proportion -	vacad to high poutro	n fluonco
Limited availability of data on me (fracture toughness) and swelling				
ratio close to 2 (HFIR) and 20 (few				
spectrum (swelling, corrosion, me		-		
Only few data on mechanical pro		• • •		ماد
To improve fatigue and fretting w	•			
				izing could be
done. Today, no coating has been qualified under irradiation. No data have been published on irradiation creep behaviour.				
-		-		TA TO TO for
Irradiation of model alloys (with simplified composition and other tempering T4, T6, T7 for				

heat treatable series) and microstructural characterisations (TEM, TAP...) would improve the understanding of physical mechanisms (stability of the pre-existing beta" and nature of the new phase induced by the transmutation).

References:

M. Kolluri, Neutron Irradiation Effects in 5xxx and 6xxx Series Aluminum Alloys: A Literature Review, Radiation Effects in Materials, Waldemar A. Monteiro, IntechOpen, DOI:

10.5772/63294. Available from: https://www.intechopen.com/chapters/50632

Property improvements required or in progress

Validation of fracture mechanics testing of sub-size CT specimens for surveillance programs				
Level of technological readiness	9	Likeliness of use	90%	

Other observations

Corrosion of Aluminium alloys

List of identity card authors

N.V.V.R.M. Kolluri (NRG), J. Garnier (CEA)

2.9 High entropy alloys

Compositions of interest	Fe, Ni, Cr, Mn + Al	, Nb, Ti, Mo, Cu	
Type of reactor	Large reactors	SMR (if applicable)	Notes
Light water reactor			High entropy or
Heavy water reactor			compositionally
Sodium-cooled fast reactor			complex alloys
Lead alloy- fast cooled reactor	Х	Х	(HEA, CCA) can
Gas-cooled fast reactor			be tailored to
(Very) High Temperature Reactor			be used in
Water-cooled supercritical reactor			most reactor
Molten salt reactor	Х	Х	concepts.
Other (specify here)			
Fusion	Х	Х	
Component type	Structural compor	nents working at hi	gh-temperatures,
		aterials, Diffusion b	
	core components		·
Method of manufacture		ng, Casting, Coating	g, 3D printing
Assembly method		<u> </u>	
Target operating environment	Contact with molt	en salts, or (depen	ding on
	composition) mol		0
Properties that make the material s	uitable for the targ	et environment	
The CrFeMnNi familty with addition	ns of other element	s (Al, Nb, Ti, Mo, C	u) have shown a
combination of good properties:			
- High microstrutural stability			
- Irradiation resistance (also resista	nce to phase transf	ormation and elem	nent separation)
comparable or superior to austenit	•		, ,
- Very low volume swelling.			
- High hardness and yield strength,			
- Strong resistance to high-temper			
- Creep strength,	ature softening,		
- Excellent oxidation resistance.			
<u>References:</u>			
S. Shen, et al. Journal of Nuclear Materials 5	40 (2020) 152380. W. M	utfag, et al. Vacuum 18	8 (2021) 110181
N.A.P Kiran Kumar, et al. Acta Materialia 113	• • •	-	
120			
Open questions to consider			
- Understand radiation damage resis			
- Volume swelling has been seen de	pendent on composi	ition. The effect of	-
- Volume swelling has been seen dep properties seems to play an importa	pendent on composion int role and further i	ition. The effect of nvestigations are r	equired.
 Volume swelling has been seen deproperties seems to play an importa Microstructural stability at long explanation 	pendent on composi int role and further i posure times has no	ition. The effect of nvestigations are r t been properly add	equired.
 Volume swelling has been seen deproperties seems to play an importa Microstructural stability at long experiments at operational temperat 	pendent on composint role and further i posure times has no ures for 5000 -1000	ition. The effect of nvestigations are r t been properly ado) h are required.	equired. dressed yet. Heat
 Volume swelling has been seen deproperties seems to play an importa Microstructural stability at long experiments at operational temperat As the current TRL is low, processa 	pendent on composi int role and further i posure times has no ures for 5000 -10000 bility, weldability an	ition. The effect of nvestigations are r t been properly ado) h are required.	equired. dressed yet. Heat
 Volume swelling has been seen deproperties seems to play an importa Microstructural stability at long experiments at operational temperat As the current TRL is low, processa and scalability can be still optimized 	pendent on composi int role and further i posure times has no ures for 5000 -10000 bility, weldability an	ition. The effect of nvestigations are r t been properly ado) h are required.	equired. dressed yet. Heat
 Volume swelling has been seen deproperties seems to play an importa Microstructural stability at long experiments at operational temperat As the current TRL is low, processa 	pendent on composi ont role and further i posure times has no ures for 5000 -10000 bility, weldability an	ition. The effect of nvestigations are r t been properly add 0 h are required. d other aspects rel	equired. dressed yet. Heat ated to productior

Property improvements required or in progress

Irradiation embrittlement occurs in CrFeMnNi, an important decay on ductility has been observed.C. Li *et al.*, Journal of Nuclear Materials 527 (2019) 151838
 Corrosion is poorly explored in this system. While it is expected that Cr offers some protection, it may be insufficient and alumina scale protection needs to be explored. CrFeMnNiAl system, with other additional elements has been initially explored with promising results

 Ashi, Corrosion Science 170 (2020), 108654
 The development of Complex Concentrated Alloys (CCAs) with secondary phase reinforcement and/or martensitic HEAs (both with alumina layer) are among the most promising solutions for nuclear materials

 Level of technological readiness 2-3

Other observations

List of identity card authors

Alfons Weisenburger (KIT), I.Toda-Caraballo (CENIM-CSIC), Kurpaska Lukasz (NCBJ), Stefanos Papanikolaou (NCBJ)

T91 (X10CrMoVNb9-1), EUROFER (Mo, Nb, and Ni is replaced **Compositions of interest** by W, V, Mn, Ta) SMR (if Notes Type of reactor Large reactors applicable) Light water reactor Heavy water reactor Sodium-cooled fast reactor Х х Lead alloy- fast cooled reactor Х Cannot be used х in LBE due to LME in the target operations temperature. Potentially applicable to pure Pb after verification LME is not an issue. Gas-cooled fast reactor (Very) High Temperature Reactor Water-cooled supercritical reactor Molten salt reactor Other Blanket and Fusion Х Diverter cassette structures **Component type** Heat exchanger, steam generator, Fusion (DEMO) : in-vessel components Method of manufacture Forged, rolling Vacuum arc or induction melting, vacuum arc re-melting, Products: plates, bars, tubes Fusion welding (TIG, EB, Laser). HIP (DEMO). Additive Assembly method manufacturing 350°C to 550°C **Target operating environment** Fusion reactor, helium coolant: 300-550°C@8 MPa; Fusion reactor, water coolant: 285-328°C@15.5 MPa; Properties that make the material suitable for the target environment

2.10 Ferritic / martensitic steels (base metals and welds)

- High resistance to swelling

- Good heat conductivity, low thermal expansion coefficient, good thermal fatigue resistance

- Low induced radioactivity for RAFM variants

References:

[1] C. Cabet, F. Dalle, E. Gaganidze, J. Henry, H. Tanigawa, Ferritic-martensitic steels for fission and fusion applications, J. Nucl. Mater. 523 (2019) 510-537

[2] A.-A.F. Tavassoli and al., Current status and recent research achievements in ferritic/martensitic steels, J. Nucl. Mater. 455 (2014) 269-276

Open questions to consider

- The influence of transmutation formed helium and hydrogen on mechanical (evolution of DBTT)

and thermo-physical properties

- Loss of uniform elongation after low temperature neutron irradiation
- The use of SSTT for data generation in the irradiated state-Creep-fatigue interactions

- Liquid metal corrosion and liquid metal embrittlement (steam oxidation is also a key issue), coating

- Large welds, welding and heat treatment are critical

- Fracture toughness at high temperature

- Codification in RCC-MRx

References:

E. Gaganidze, J. Aktaa, Assessment of neutron irradiation effects on RAFM steels, Fus. Eng. Des. 88 (2013) 118-128, http://dx.doi.org/10.1016/j.fusengdes.2012.11.020

H. Tanigawa, E. Gaganidze, T. Hirose, M. Ando, S.J. Zinkle, R. Lindau and E. Diegele, Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion 57 (2017) 092004 (13pp), https://doi.org/10.1088/1741-4326/57/9/092004

C. Cabet, F. Dalle, E. Gaganidze, J. Henry, H. Tanigawa, Ferritic-martensitic steels for fission and fusion applications, J. Nucl. Mater. 523 (2019) 510-537

Property improvements required or in progress

- Creep resistance can be improved by thermo-mechanical properties and/or oxide dispersion.
- HIP and other non-fusion joining techniques are under study

- Chemical composition optimization can improve low temperature embrittlement (DBTT) and high temperature strength

References:

[1] G. Pintsuk, E. Diegele, S. L. Dudarev, M. Gorley, J. Henry, J. Reiser, M. Rieth, European materials development: Results and perspective, Fus. Eng. Des. 146 (2019) 1300-1307, https://doi.org/10.1016/j.fusengdes.2019.02.063

Level of technological readiness	T91 (9), EUROFER97 (7)	Likeliness of use
	For Fusion : 5	

Other observations

The use of F/M steel is not considered in Liquid lead bismuth due to liquid metal embrittlement issues. LME in molten lead needs assessment. In Fusion reactor, EUROFER97 is on the qualification path, LME by PbLi needs assessment.

List of identity card authors

M. Serrano (CIEMAT), E. Gaganidze (KIT), J. Aktaa (KIT), M. Angiolini (ENEA)

Ni AFA steels, AFA Superalloys, Mn AFA steels Fe-(12-35) Ni **Compositions of interest** - (12-20) Cr - (2-6) Al - (0.1-3) Nb +Alloying (Mo,Si,C). Type of reactor Large reactor SMR (if applicable) Notes Light water reactor Heavy water reactor х х Sodium-cooled fast reactor Lead alloy-cooled fast reactor х х Gas-cooled fast reactor (Very) high temperature reactor Supercritical water-cooled reactor х х Х Х Molten salt reactor Other (specify here) Fusion Al activation Structures subjected to HLM/water/Supercritical water Type of component corrosion, Heat exchanger tubes, core components Fuel Cladding Manufacturing method Standard cast, weld overlay, coating Joining method Welding (under development) **Target operational environment** High temperature (550°C and higher), long term contact with fluid corrosive médium (Contact with heavy liquid metal up to 650°C) Properties that make the material suitable for the target environment - The alumina forming austenitic steels are a new class of high-temperature alloys that promise both superior corrosion and creep resistance while keeping low cost, formability, and the weldability of conventional high-temperature austenitic steels. - AFA steels demonstrated good corrosion resistance in contact with heavy liquid metals due to insitu of thin protective alumina scales **References:** Muralidharan, Govindarajan & Yamamoto, Y. & Brady, M.P. & Pint, Bruce & Voke, D. & Pankiw, " Development of cast alumina-forming Austenitic stainless steel alloys for use in high temperature process environments" NACE - International Corrosion Conference Series. 2015; M. P. Brady doi.org/10.1007/s11837-008-0083-2; P. Szakálos doi.org/10.1016/j.jnucmat.2015.03.011

2.11 Alumina Forming Austenitic Steels

Open issues to be investigated

- Stability of the austenite phase

- Alloy additions that improve the ability to form a protective scale reducing the Al content
- Relationship between composition design and precipitation behavior of different phases.
- -Development of AFA alloys with no or very low content of carbon.
- Role of some phases (e.g. Laves) on creep strength.
- Stability of austenite in liquid metal.
- Increase of the internal oxidation transition temperature.
- Radiation resistance.

References:

Yamamoto et al. <u>https://doi.org/10.1007/s11661-010-0295-2</u>, H.Shi et al. Corrosion Science (2021), 10915 P. Dömstedt et al. J. Nucl. Mat. 531 (2020) 152022

Property improvements required or in progress

- Alloy design to improve the stability of the austenite phase

- Improve the ability to form a protective scale

- Long term phase stability				
- Decrease the costs decreasing the Ni content, alternative austenite stabilizers				
References: "The Development of Alumina Forming Austenitic Alloy for Core Application in Advanced Nuclear Reactors", Z. Zhou et al., Materials Science Forum, ISSN: 1662-9752, Vol. 999, pp 72-80, 2020.				
Technology readiness level TRL3- 4 Likeliness of use				
Other observations				
List of authors of the ID card				
Massimo Angiolini (ENEA), Alfons Weisenburger (KIT)				

2.12 FeCrAI alloys

Compositions of interest	Fe, Cr, Al, + Y, Hi	f, Zr,Nb,Ti	
Type of reactor	Large reactors	SMR (if applicable)	Notes
Light water reactor	Х	Х	
Heavy water reactor			
Sodium-cooled fast reactor			
Lead alloy- fast cooled reactor	Х	Х	Fe10Cr4Al
Gas-cooled fast reactor			
(Very) High Temperature Reactor			
Water-cooled supercritical reactor			
Molten salt reactor			
Other			
Fusion	Х		Al activation
Component type	Plates (e.g. grid assemblies), bars (e.g. supportive rods), heat exchanger, core components Structural components for advanced reactor designs, First wall and blanket structures for fusion reactors.		
Method of manufacture	Vacuum melt process + Hot-work or cold-work combined with re-heating process. Casting, coating, weld overlay. Powder metallurgy to avoid macroscopic segregations.		
Assembly method	Welding		
Target operating environment	Contact with heavy liquid metal up to 650°C (up to 850°C in Lead alloy cooled reactor for some FeCrAl alloys (Fe10Cr4AI))		
Properties that make the material s			
Excellent oxidation and corrosion res of thin protective alumina scales), Du	sistance in steam a	and air environment (I	n-situ formation
Open questions to consider			
High temperature mechanical proper Creep and fatigue properties as a fur Fracture toughness of neutron irradi Environmental effects during or after need extensive testing and assessme Irradiation creep data at high doses Change of deformation mode from k Fretting and wear characteristics of k Role of Al content on the dislocation Role of minor alloying elements on th Effect of C on the embrittlement. Precipitation of α' at high doses. Weldability as a function of Cr and A Weldable, but reduction in ductility with rapid cooling gives ductile weld alloy on a thin wall austenitic stainles	action of composit ated FeCrAl. er irradiation of F ent). ow dose to moder ower Cr (<20 wt.% loop nature and o he dislocation loo I content. due to grain grow Is (Development o	eCrAl (Corrosion performate/high dose regime Gate/high dose regime Cr) FeCrAl alloys. density. p formation and growt	th. n. Laser welding
References: Yang, Sheng et al., Nuclear materials and end	ergy, 2021-06, Vol.27,	, p.100958)	

Handbook on the material properties of FeCrAl alloys for nuclear power production applications (FY18 version: Revision 1.1) ORNL/SPR-2018/905 Rev.1

Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys Field, K and al., Journal of nuclear materials, 2017-06, Vol.489 , p.118-128.

Property improvements required or in progress

- Fine adjustment of the chemical composition and thermoplastic treatments to eliminate the formation of transient alumina at temperatures <600°C.
- New welding technology to avoid Al depletion in the welding area.
- Produce martensitic or ferritic-martensitic microstructures with appropriate compositional changes and thermal or thermo-mechanical treatments.

Level of technological readiness	TRL4-5	Likeliness of use		
Other observations				
For Fe10Cr4Al alloys: Excellent oxida	tion properties up	to 800°C:		
Dömstedt, Peter; Lundberg, Mats; Szakálos, Peter Journal of nuclear materials, 2020-04-01, Vol.531, p.152022.				
Structure stability and good ductility at all temperatures. Liquid metal embrittlement				
resistant in pure Pb but not in PbBi. Irradiation stability up to at least 14 dpa.				
List of identity card authors				
M Angiolini (ENEA) A Maisanhurga	r (KIT) D Szakalog			

M. Angiolini (ENEA), A. Weisenburger (KIT), P. Szakalos (KTH)

2.13 Hard facing materials

Compositions of interest	Cobalt based a	lloys (stellite), C	r-based, Ni-	based
Type of reactor	Large read	tors	SMR (if app	licable)
Light water reactor	Х		Х	
Heavy water reactor				
Sodium-cooled fast reactor				
Lead alloy- fast cooled reactor				
Gas-cooled fast reactor				
(Very) High Temperature Reactor				
Water-cooled supercritical reactor				
Molten salt reactor				
Other				
Fusion				
Component type	Alignment pins, valve seats, radial key, support structures			
Method of manufacture	In Work Shop: Welding (Manual/Mechanized),			zed),
Assembly method	Powder Metallurgy PM-HIP & AM(HIP)			
Assembly method	In Situ requirements: Welding (Manual/Mechanized) Up to 320°C (BWR or PWR environment)			echanized)
Target operating environment Properties that make the material su				
Low friction, high surface hardness,				u /fuotting
Open questions to consider	corrosion resis	lance, gailing/ac	inesive wea	ir/iretting
Activity build up with Co-and Ni-l	based allow (r	diaactiva isatar		ting gamma
radiation decomposition)	uaseu alloy (la	iuloactive isoto	Jes genera	ung gannna
Property improvements required or	in progress			
Decrease the use of Co- and Ni- base	d alloy, decreas	e the sticking. W	eldability, S	olid
solution of C and N for Martensite fo	rmation & PRE	or corrosion res	stance	
Level of technological readiness	8	Likeliness of us	e 80%	,)
Other observations				
 High compressive strength, adequation polishability 	te toughness/d	uctility, machinal	oility, grinda	ability
List of identity card authors				
Pal Efsing (KTH, Vattenfall), Björn For	ssgren (Vattenf	all), Benoit Tang	IV (CEA)	
rai cisilig (KIR, Valleniali), Bjorn For	ssgren (vallen	an, benon rang	iy (CEA)	

2.14 Duplex austenitic / ferritic steels

Compositions of interest	Cr-Ni-Mo				
Type of reactor	Large rea	actors	SMR	(if applicable)	
Light water reactor	Х			Х	
Heavy water reactor					
Sodium-cooled fast reactor					
Lead alloy- fast cooled reactor					
Gas-cooled fast reactor					
(Very) High Temperature Reactor					
Water-cooled supercritical reactor					
Molten salt reactor					
Other					
Fusion					
Component type	Secondary con	nponents			
Method of manufacture	Casting / additive manufacturing				
Assembly method	Welding				
Target operating environment	Lower than 250°C (specifically in oxidizing conditions				
	(PWR or BWR)				
Properties that make the material su	uitable for the t	arget enviro	nment		
Better pitting resistance and mecha	nical properties	than 304/3 ²	16.		
Open questions to consider					
Spinodal decomposition at high temp	perature				
Upper temperature for use: discrepa	ncy between co	des (from 25	0 to 315°	C)	
Property improvements required or	in progress				
Decrease the spinodal decomposition	n by allowing to	increase the	temperat	ture for use in the	
primary circuit					
Level of technological readiness	8	Likeliness o	f use	100%	
Other observations					
-					
List of identity card authors					
P. Efsing (KTH, Vattenfall), B. Tanguy	(CEA)				

3. Fuel cladding materials

Coordinator: Massimo Angiolini, ENEA

3.1 Chromium coated Zirconium alloys

Compositions of interest	Cr based coati	ngs on Zirconi	um alloy	,
Type of reactor	Large rea	actor	SMR	(if applicable)
Light water reactor	Х			Х
Heavy water reactor				
Sodium-cooled fast reactor				
Lead alloy-cooled fast reactor				
Gas-cooled fast reactor				
(Very) high temperature reactor				
Supercritical water-cooled reactor				
Molten salt reactor				
Other (specify here)				
Fusion				
Type of component	Fuel cladding			
Manufacturing method	CVD, PVD			
Joining method	N.A.			
Target operational environment	LWR water, hi	gh temperatu	e steam	
Properties that make the material s				
 Deposition of protective coatings of 				ave corrosion
resistance and decrease hydrogen		-		
enhanced ATF cladding	uptake, is consi	uereu as a nec		
- Delay strong oxidation of the Zirca	lov after bydrog	on roloaco dui	ing the d	locian basis
accidents (DBA) and beyond design	, , ,		ing the t	Lesigii Dasis
References: Jean-Christophe Brachet et al			0010 02 01	0
Open issues to be investigated ^{iError! N}	Marcador no definido.	.1010/ J.Jhuemat.	2019.02.01	
- Behaviour under neutron irradiatio				
- Estimation of coating survival time				
- Formation of bubbles / blisters / ve		e Cr coating a	nd the Zr	substrate
- Ballooning				
- Impact of eutectics (1559°C for Cr-	rich compositio	ns and 1316°C	Zr-rich)	on the maximum
temperature attainable under irrad			- /	
- Impact of the differences in the th		l properties		
- Residual stresses at the interfaces		• •		
References:		,		
Jianqiao Yang et al., <u>https://doi.org/10.1016</u> ,	/j.jallcom.2021.162	4 <u>50</u>		
ORNL/SPR-2021/6 "Development of Standar		uirements, Measu	irement M	lethods, and
Reporting Guidance for Coatings 01/15/202				
Property improvements required or				
- Fretting performance and wear res				
- Coating of the end plug joints with				
Technology readiness level	8-9	Likeliness of	use	100%
Other observations				
Tests in reactor by industrials in prog	gress			
List of authors of the ID card				

Mirco Grosse, KIT, Jean Christophe Brachet, CEA, Massimo Angiolini, ENEA

3.2 ODS steels

Compositions of interest	9-18% Cr, FeCrA	Al, Austenitic ODS			
Type of reactor	Large reactor SMR (if applicable) Notes				
Light water reactor					
Heavy water reactor					
Sodium-cooled fast reactor	Х	Х	9-18%Cr		
Lead alloy-cooled fast reactor	Х	X	Only if coated to protect against LME		
Gas-cooled fast reactor					
(Very) high temperature reactor					
Supercritical water-cooled reactor		Х	310L ODS		
Molten salt reactor					
Other (specify here)					
Fusion	Х		Low activation version		
Type of component	Fuel cladding, ir	nternals, specific part	S		
Manufacturing method	Mechanical alloying followed by different sintering process (HIP, SPS,), Cold Spray, internal oxidation				
Joining method					
Target operational environment	Sodium cooled fast reactors				
Properties that make the material su	uitable for the ta	rget environment			
 Resistance to neutron irradiation at Good corrosion resistance in sodium Reference: Yann de Carlan <i>et al.</i>, J. Nucl. Mater. 	n environment 428, 6 (2012)	ו 150 dpa			
https://doi.org/10.1016/j.jnucmat.20)11.10.037				
Open issues to be investigated					
 Reproducibility, quality assurance, a Welding routes 	anisotropy (tubes)			
Property improvements required or	in progress				
 Optimize the fabrication route Non-fusion weld techniques (e.g. St 	ir friction)				
Technology readiness level	4-5	Likeliness of use	20%		
Other observations					
Other observations List of authors of the ID card					

3.3 Coated AIM1 steels

Compositions of interest	15-15 Ti (AIM-1) + Alumina coating				
Type of reactor	Large reactor SMR (if applicable) Notes				
Light water reactor					
Heavy water reactor					
Sodium-cooled fast reactor	Х	X			
Lead alloy-cooled fast reactor	Х	X			
Gas-cooled fast reactor					
(Very) high temperature reactor					
Supercritical water-cooled reactor					
Molten salt reactor					
Other (specify here)					
Fusion					
Type of component	Fuel Cladding				
Manufacturing method	Seamless Tubing Process + deposition process for				
	ceramic coatings				
Joining method	TIG welding, electron-beam welding, PLD, ALD,				
	Detonation Gun, CVD (Pack Cementation)				
Target operational environment	Pure lead up to 650°C				
Properties that make the material s	uitable for the targe	t environment			

- Large resistance to creep, irradiation swelling, irradiation creep of 15-15 Ti

- Coating compatibility with lead-coolant environment up to 650°C in a wide range of oxygen concentration

- Good resistance to ion irradiation of Ceramic coatings.

References

P. Lorusso, S. Bassini, A. Del Nevo, I. Di Piazza, F. Giannetti, M. Tarantino, M. Utili, "Gen-IV LFR Development; Status & Perspectives" Progress in Nuclear Energy, 105 (2018), <u>https://doi.org/10.1016/j.pnucene.2018.02.005</u>
Tarantino, M.; Angiolini, M.; Bassini, S.; Cataldo, S.; Ciantelli, C.; Cristalli, C.; Del Nevo, A.; Di Piazza, I.; Diamanti, D.; Eboli, M.; Fiore, A.; Grasso, G.; Lodi, F.; Lorusso, P.; Marinari, R.; Martelli, D.; Papa, F.; Sartorio, C.; Utili, M.; Venturini, A.; "Overview on Lead-Cooled Fast Reactors Design and Related Technologies Development in ENEA" Energies 2021, 14, 5157, <u>https://doi.org/10.3390/en14165157</u>

- A. Alemberti, M. Caramello, M. Frignani, G. Grasso, F. Merli, G. Morresi, M. Tarantino, "ALFRED reactor coolant system design" Nuclear Engineering and Design 370 (2020), <u>https://doi.org/10.1016/j.nucengdes.2020.110884</u>

- F. García Ferré, A. Mairov, D. ladicicco, M. Vanazzi, S. Bassini, M. Utili, M. Tarantino, M. Bragaglia, F.R. Lamastra, F. Nanni, L. Ceseracciu, Y. Serruys, P. Trocellier, L. Beck, K. Sridharan, M.G. Beghi, F. Di Fonzo, "Corrosion and radiation resistant nanoceramic coatings for lead fast reactors" Corrosion Science 124 (2017), <u>https://doi.org/10.1016/j.corsci.2017.05.011</u>

- S. Bassini, S. Cataldo, C. Cristalli, A. Fiore, C. Sartorio, M. Tarantino, M. Utili, P. Ferroni, M. Ickes, A. Alemberti, M. Frignani, "Material Performance in Lead and Lead-Bismuth Alloy", in: Konings, Rudy JM and Stoller Roger E (eds.). Comprehensive Nuclear Materials 2nd edition, vol. 4, pp. 218-241, 2020, <u>http://dx.doi.org/10.1016/B978-0-12-803581-8.00749-9</u>

Open issues to be investigated

- Neutron compatibility of ceramic coatings up to 100 dpa

- Resistance to lead corrosion up to 800°C

References

P. Lorusso, S. Bassini, A. Del Nevo, I. Di Piazza, F. Giannetti, M. Tarantino, M. Utili, "Gen-IV LFR Development; Status & Perspectives" Progress in Nuclear Energy, 105 (2018), <u>https://doi.org/10.1016/j.pnucene.2018.02.005</u>
Tarantino, M.; Angiolini, M.; Bassini, S.; Cataldo, S.; Ciantelli, C.; Cristalli, C.; Del Nevo, A.; Di Piazza, I.; Diamanti, D.; Eboli, M.; Fiore, A.; Grasso, G.; Lodi, F.; Lorusso, P.; Marinari, R.; Martelli, D.; Papa, F.; Sartorio, C.; Utili, M.;

Venturini, A.; "Overview on Lead-Cooled Fast Reactors Design and Related Technologies Development in ENEA" Energies 2021, 14, 5157, <u>https://doi.org/10.3390/en14165157</u>

Property improvements required or in progress

- Lead compatibility up to 650°C with mechanical loads (pressurized tubes)

6

- Neutron compatibility up to 5-10 dpa

Likeliness of use 85%

Other observations

- Reference solution for ALFRED DEMO-LFR

- Under investigation for MYRRHA ADS

- Under investigation for WEC-LFR (UK)

List of authors of the ID card

Technology readiness level

Mariano Tarantino, Massimo Angiolini, Fabio Di Fonzo

3.4 Swelling resistant austenitic steels beyond AIM1

Compositions of interest	FeCrNi stabilize	d and Si, P optimized	alloys
Type of reactor	Large reactor	SMR (if applicable)	Notes
Light water reactor			
Heavy water reactor			
Sodium-cooled fast reactor	Х	Х	
Lead alloy-cooled fast reactor	Х	Х	Coated version
Gas-cooled fast reactor	Х	Х	1 st core @ low
			temperature
(Very) high temperature reactor			
Supercritical water-cooled reactor			
Molten salt reactor			
Other (specify here)			
Fusion			
Type of component	Fuel Cladding		
Manufacturing method	-		
Joining method			
Target operational environment	Neutron irradia	tion at dose higher th	an 100 dpa
Properties that make the material s		-	•
References: J.L. Seran, M. Le Flem (Ed.) Structural Materi https://www.doi.org/10.1016/B978-0-08-10 Open issues to be investigated	0906-2.00008-2		
 - Gain better understanding on the irradiation - Cr, Ni, P, Si, carbide former optim - stabilize the dislocation microstru - Increase in sinks amount and efficient 	nization ucture under irrad	-	y after n
swelling by ion irradiation" https://hal.archi	d austenitic steels stu ves-ouvertes.fr/hal-0	dy of the influence of tita	nium and niobium on
M. Le Flem <i>et al.</i> , <u>https://www.doi.org/10.10</u> Y. de Carlan <i>et al.</i> "Development of advanced swelling by ion irradiation" <u>https://hal.archi</u> Property improvements required or	d austenitic steels stu ves-ouvertes.fr/hal-0	dy of the influence of tita	nium and niobium on
M. Le Flem <i>et al.</i> , <u>https://www.doi.org/10.10</u> Y. de Carlan <i>et al.</i> "Development of advance swelling by ion irradiation" <u>https://hal.archi</u> Property improvements required or Ductility after neutron irradiation	d austenitic steels stu ves-ouvertes.fr/hal-0	dy of the influence of tita 2418147	nium and niobium on
M. Le Flem <i>et al.</i> , <u>https://www.doi.org/10.10</u> Y. de Carlan <i>et al.</i> "Development of advanced swelling by ion irradiation" <u>https://hal.archi</u> Property improvements required or Ductility after neutron irradiation Technology readiness level	d austenitic steels stu ves-ouvertes.fr/hal-0	dy of the influence of tita	nium and niobium on
M. Le Flem <i>et al.</i> , <u>https://www.doi.org/10.10</u> Y. de Carlan <i>et al.</i> "Development of advanced swelling by ion irradiation" <u>https://hal.archi</u> Property improvements required or	d austenitic steels stu ves-ouvertes.fr/hal-0	dy of the influence of tita 2418147	nium and niobium on
M. Le Flem <i>et al.</i> , <u>https://www.doi.org/10.10</u> Y. de Carlan <i>et al.</i> "Development of advanced swelling by ion irradiation" <u>https://hal.archi</u> Property improvements required or Ductility after neutron irradiation Technology readiness level	d austenitic steels stu ves-ouvertes.fr/hal-0	dy of the influence of tita 2418147	nium and niobium on
M. Le Flem <i>et al.</i> , <u>https://www.doi.org/10.10</u> Y. de Carlan <i>et al.</i> "Development of advanced swelling by ion irradiation" <u>https://hal.archi</u> Property improvements required or Ductility after neutron irradiation Technology readiness level	d austenitic steels stu ves-ouvertes.fr/hal-0	dy of the influence of tita 2418147	nium and niobium on

3.5 SiC_f-SiC composites

Compositions of interest	Nuclear grade SiC: highly pure and stoichiometric Si/C			
Type of reactor	Large SMR (if applicable) Notes			
	reactor			
Light water reactor	Х	Х	Accident tolerant	
			candidate	
Heavy water reactor				
Sodium-cooled fast reactor	Х		Channel box	
Lead alloy-cooled fast reactor				
Gas-cooled fast reactor	Х	Х		
(Very) high temperature reactor	Х	Х		
Supercritical water-cooled reactor				
Molten salt reactor	Х	Х		
Other (specify here)				
Fusion	Х			
Type of component	Fuel Clad	ding & core compor	ients	
Manufacturing method	Chemical	Chemical Vapour infiltration, NITE		
Joining method	Brazing & assembly			
Target operational environment	LWR, high	n temperature stear	n, High temperature He,	
	Na or molten salt environment			
Properties that make the material	suitable fo	or the target enviro	nment	

- High-temperature mechanical properties, excellent irradiation resistance, inherent low

activation and other superior physical/chemical properties

- For LWR, excellent passive safety features both in design basis and beyond design basis severe accidents due to an excellent high-temperature strength and an outstanding oxidation resistance to a high-temperature steam

- Reduced neutron absorption cross-section enabling a smaller uranium enrichment and that could also result in increasing the fuel cycle duration
- Exceptional inherent radiation resistance and a lack of progressive irradiation growth.
- Higher critical heat flux than for conventional Zr-based alloys,
- High stiffness and competitive fatigue behaviour,
- Mechanical properties almost time independent, UO₂ compatibility
- For design basis accident and beyond, outstanding oxidation resistance to high-temperature steam
- Significantly reduced hydrogen generation and improved structural integrity under severe accident conditions.
- Maintain a coolable geometry after quenching
- References:

State of the Art Report on Light Water Reactor Accident-Tolerant Fuels, OECD, Nuclear Science 2018 K. Terrani, Accident tolerant fuel cladding development: Promise, status, and challenges, JNM 501 (2018) 13-30.

Open issues to be investigated^{iError! Marcador no definido.}

- Structural design concept of SiC/SiC composite claddings needs to be further optimized
- Technology for end-plug joining with gas tightness and adequate strength should be developed because the SiC ceramics cannot be welded,
- New devoted industrial network needed for the production of full-length tubes
- Pre-normative research to provide the scientific bases (experimental & modelling) to establish new design rules and reliable mechanical test methods for SiC/SiC composites

for standardization			
 In-pile testing 			
Property improvements	required or in prog	ress	
For LWR			
	on of irradiated SiC a	nd effect of radiolys	C that leads to a recession is and mitigation solutions: emistry
	istical failure prope	rties of SiC/SiC con	dding Interaction issue), nposite claddings, defining
- Relatively poor thern	nal conductivity un	der neutron irradia	tion in the LWRs normal chanical stresses leading to
	irradiated SiC. Irrad		high tensile stress due to nal conductivity decrease in
under irradiation wou drop across the clad	Id increase the pelle ding and an increa	et-cladding gap and se in fuel tempera	f SiC composite claddings cause a large temperature ture. Mitigation solutions: ied fuel geometry such as
the cladding design. A of the matrix beyond strategy: metal/ceram	fully-ceramic SiC cla the elastic limit to ic clad concept, whi omposite thanks to	dding design cannot the composite (i.e. ch would withstand fair ductility of th	ptable deformation and on prevent the multi-cracking at low loading). Mitigation any strain imposed by the e metal so that the leak- ite occurs
References L. Snead, Y. Katoh, T. https://doi.org/10.1016/B978 Y. Katoh, Ceramic matrix con composites. https://doi.org/10	-0-08-056033-5.00093-8 nposites in fission and fi	usion energy applications	SiC/SiC, revised in 2019, s, in advances in Ceramic Matrix
Technology readiness	Between 4 and 5	Likeliness of use	Breakthrough solution ->
level	(LWR)		long time to deployment
Other observations			
-			
List of authors of the ID			
Christophe Lorrette, CEA	l l		

4. Nuclear fuel materials

Coordinators: Marjorie Bertolus, CEA, Marco Cologna, JRC

4.1 UO₂ fuel for light water reactors

Compositions of interest	²³⁵ U content bet ~1.98 and 2.01	ween ~2 and 5%, O/M	ratio between
Type of reactor	Large reactor	SMR (if applicable)	Notes
Light water reactor	X		PWR, BWR, WWER
Heavy water reactor			
Sodium-cooled fast reactor			
Lead alloy-cooled fast reactor			
Gas-cooled fast reactor			
(Very) high temperature reactor			
Supercritical water-cooled reactor			
Molten salt reactor			
Other (specify here) Fusion ^{iError! Marcador no definido.}			
Type of component	Fuel		
Manufacturing method	Ceramic powder	technology	
Joining method	N/A		
Droportion that make the material of	~1000°C (tempe – Average fuel re Middle (example (example PWR: and middle pressible between ~20 and fabrications and increases with the with high energy centre)	g central temperature rature at 30-40 % of th od Burn-up targeted ~6 e BWR: around ~70-80 ~123-160 bar) pressure sure in fuel rods (initia d 35 bar for more rece ~2–8 bar for BWR fuel ne irradiation level) – F ((around 1.10 ¹⁴ n/cm ⁻²	e melting point) 50-75 GWd/t – bar) or high e on outer clad I pressure is nt PWR fuel Is – this pressure ilux of neutrons
Properties that make the material s		-	
 High melting point providing large No allotropic changes, excellent state Good behaviour under irradiation i Good compatibility with fuel rod cl 	ability n normal and trar adding	sient conditions	
- Good compatibility with water coo References: D. Baron, L. Hallstadius, K. Kulacsy, R. Larger Chap. 2.02 Fuel Performance of Light Water	nton, J. Noirot, Compre	ehensive Nuclear Materials	
Open issues to be investigated			-
 Margin to fuel melting: Some programmed understanding of thermal properties (thermal conductivity, heat capacity Behaviour of UO₂ fuel in steady state 	s evolutions under , melting tempera	r irradiation and at high ture)	n temperature

characterizations and understanding of microstructure evolution: high burnup structure								
(HBS) and restructuring occurring in the centre of high burnup UO_2 fuel								
- Behaviour of UO ₂ fuel under transient conditions (Ramp, RIA, LOCA): Some progresses								
are still needed in the characterizatio	are still needed in the characterizations and understanding of mechanical properties							
evolution under irradiation and espec			•					
thermal expansion, thermal creep, loo								
properties								
- Some progress is still needed on the	modelling of UO	fuel under transient o	conditions (RIA					
LOCA): damage of grain boundaries	-							
and Dispersal	, 11551011 gus reieu	seu, ruerrugmentut	on nelocation					
References:								
- D. Baron, L. Hallstadius, K. Kulacsy, R. Largen	nton I Noirot Compr	ehensive Nuclear Materials	Second Edition					
Chap. 2.02 Fuel Performance of Light Water R								
102866-7			-,					
- J. Carbajo, G. Yoder, S. Popov, V. Ivanov, A re		hysical properties of MOX a	and UO_2 fuels,					
Journal of Nuclear Materials 299 (2001) 181-1								
Property improvements required or								
- Study new Enhanced Accident Toler								
in order to reduce internal pressure o	of UO ₂ fuel rods at	the End Of Life under	steady state					
conditions and to improve the thermo	omechanical beha	aviour under transient	conditions					
- Mitigation of fission gas (xenon, kryp	pton) released an	d the Fuel Fragmentat	ion Relocation					
and Dispersal								
Technology readiness level	9	Likeliness of use	100%					
Other observations								
- Improvements and reduction of uncertainty margins needed to take into account more								
stringent safety constraints (regulators)								
List of authors of the ID card								
Rodrigue Largenton (EDF), Bruno Mic	hel (CEA)							

4.2 MOX fuels for LWR

Compositions of interest		ween ~4 and 12%, O/N , a few % of Am (betw	
Type of reactor	Large reactor	SMR (if applicable)	Notes
Light water reactor	X	••••••(•• •pp::••••••	PWR, BWR
Heavy water reactor			
Sodium-cooled fast reactor			
Lead alloy-cooled fast reactor			
Gas-cooled fast reactor			
(Very) high temperature reactor			
Supercritical water-cooled reactor			
Molten salt reactor			
Other (specify here)			
Fusion			
Type of component	Fuel		
Manufacturing method		er technology (MIMAS)
Joining method	N/A	er technology (iviliviAs)
Target operational environment		erature (outer surface	\~260.220°C
Properties that make the material s - High melting point providing large	Typical operati ~1000°C (temp – Average fuel 3 or 4 years of BWR: around ~ ~123-160 bar) pressure in fue and 20 bar for ~2–8 bar for BV the irradiation energy (around uitable for the t	ng central temperatur erature at 30-40 % of rod Burn-up targeted residence in core – Mi 70-80 bar) or high (ex- pressure on outer clad I rods (initial pressure more recent PWR fuel WR fuels – this pressur level) – Flux of neutro d 1.10 ¹⁴ n/cm ⁻² /s in the arget environment	e inside the fuel the melting point) ~60-70 GWd/t => ddle (example ample PWR: 1 and middle is between ~15 fabrications and re increases with ns with high
 High irradiation and thermal creep No allotropic changes, excellent state Good behaviour under irradiation i Excellent behaviour in transient commuch higher than for UO₂ fuel Good compatibility with fuel rod clate Good compatibility with water cool 	ability n normal and tra nditions (ramp to adding	ests: PCMI), thermal cr	reep rate being
References: - D. Baron, L. Hallstadius, K. Kulacsy, R. Large Chap. 2.02 Fuel Performance of Light Water 102866-7 - J-P. Ottaviani, D. Staicu, R. Calabrese, N. Vé project Deliverable D7.11 State of the art with Preparing ESNII for HORIZON 2020, Grant ag Open issues to be investigated ^{iError! N} - Margin to fuel melting: Some pri understanding of thermal properties (thermal conductivity, heat capacity,	Reactors (Uranium) r, G. Trillon, J. Klous th a literature review reement no: 605177 Marcador no definido. rogresses are st s evolutions und	Oxide and MOX), Elsevier, 2 al, A. Fedorov, S. Portier, M w of MOX fuel properties, E 2, 2015 till needed in the cha der irradiation and at	2020, ISBN- 978-0-08- I. Verwerft, ESNII+ uropean Commission aracterization and

- Behaviour of MOX fuel under steady state: Some progresses are still needed in the characterizations and understanding of microstructure evolutions (high burnup structure (HBS) and restructuring occurring in the centre of high burnup MOX fuel)

- Behaviour of MOX fuel under transient conditions (Ramp, RIA, LOCA...): Some progresses are still needed in the characterizations and understanding of mechanical properties evolutions under irradiation and especially at high temperature: elastic properties and thermal expansion, thermal creep, local (within grain and on the boundaries of it) rupture properties

- Some progresses are still needed on modelling of MOX fuel under transient conditions (RIA, LOCA...): damage of grain boundaries, inter-phase cracking, fission gas released, Fuel Fragmentation Relocation and Dispersal.

- Optimize fabrication to reduce internal pressure of MOX fuel rods at the End Of Life under steady state conditions and to improve the thermomechanical behaviour under transient conditions (actions related to current MOX fuel rods and to the future possible multirecycling)

References

- D. Baron, L. Hallstadius, K. Kulacsy, R. Largenton, J. Noirot, Comprehensive Nuclear Materials Second Edition Chap. 2.02 Fuel Performance of Light Water Reactors (Uranium Oxide and MOX), Elsevier, 2020

- J. Carbajo, G. Yoder, S. Popov, V. Ivanov, A review of the thermophysical properties of MOX and UO_2 fuels, Journal of Nuclear Materials 299 (2001) 181-198

Property improvements required or in progress

- Optimize fabrication to increase homogeneity and grain size within MOX fuel in order to reduce internal pressure of MOX fuel rods at the End Of Life under steady state conditions and to improve the thermomechanical behaviour under transient conditions

- Mitigation of fission gas (xenon, krypton and helium) released and the Fuel Fragmentation Relocation and Dispersal

Technology readiness level	9	Likeliness of use	100%
Other observations			

- Improvements and reduction of uncertainty margins needed to take into account more stringent safety constraints (regulators)

List of authors of the ID card

Rodrigue Largenton (EDF), Bruno Michel (CEA)

4.3 MOX fuels for fast reactors

Compositions of interest		ween 20 and 30%, O/N	A ratio between
	1.93 and 1.99,		
Type of reactor	Large reactor	SMR (if applicable)	Notes
Light water reactor			
Heavy water reactor			
Sodium-cooled fast reactor	Х		
Lead alloy-cooled fast reactor	Х		
Gas-cooled fast reactor	Х		
(Very) high temperature reactor	Х		
Supercritical water-cooled reactor			
Molten salt reactor			
Other (specify here)			
Fusion			
Type of component	Fuel		
Manufacturing method	Ceramic powde	er technology	
Joining method	N/A		
Target operational environment	Cladding temp	erature around 600-65	0°C, typical
		peratures inside the fu	
		e melting point, Burn-u	
		0-15% FIMA), 400-800	•
	residence, very intense flux $(7.10^{15} \text{ n/cm}^{-2}/\text{s in the core})$		
		rons with high energy	
Properties that make the material s		-	
 High melting point, no allotropic changes, excellent stability, - excellent behaviour under irradiation, in particular, swelling rate much lower than other fuels Refs: Y. Guerin, Fuel Performance of Fast Spectrum Oxide Fuel Main Author(s), chap. 2.21 of Comprehensive Nuclear Materials, Elsevier, 2012 			
Open issues to be investigated			
 Margin to fuel melting: evolution of thermal properties under irradiation, thermal conductivity Knowledge of irradiation defects, evolution of microstructure: fracture, high burnup structure (HBS), evolution of composition: Pu relocation and O/M variation Fission gas and helium behaviour, transport of non-gaseous fission products 			
- Mechanical fuel-cladding interaction	•	•	
induced), Chemical fuel-cladding inte			
Reaction Oxyde Gaine (ROG), Fuel/c			
- Optimize fabrication to reduce dust issues in the context of multirecycling, consequence of multi-recycling of Pu and higher concentrations of ²⁴¹ Pu which will lead to higher ²⁴¹ Am contents			
- Corium composition and properties	S		
Ref: D.R. Olander, Fundamental aspects of nuclear reactor fuel elements, Technical information center, 1985; Strategic research agenda of the EERA-JPNM, 2019 - Strategic research agenda of the EERA-JPNM, 2019, <u>http://www.eera-</u> jpnm.eu/filesharer/documents/Materials%20for%20Sustainable%20NuclearEnergy%20- %20SRA%20of%20the%20EERA-JPNM%20-%20web%20version.pdf			
Property improvements required or			
		aterial, reduce dust iss	

of multirecycling, mitigation of cladding corrosion			
Technology readiness level	7-8	Likeliness of use	90
Other observations			
- MOX used in FR in the past. Reference fuels for ESNII systems. Improvement needed to			
take into account new reactor designs and more stringent safety constraints			
List of authors of the ID card			
Marjorie Bertolus (CEA), Marco Cologna (JRC)			

4.4 Carbide fuels

Compositions of interest	(U,Pu)C _{1+x} , Pu ~20 possible	0% to 70%, minor actinide	es also		
Type of reactor	Large reactor	SMR (if applicable)	Notes		
Light water reactor					
Heavy water reactor					
Sodium-cooled fast reactor	Х	Х			
Lead alloy-cooled fast reactor	Х	Х			
Gas-cooled fast reactor	Х	Х			
(Very) high temperature reactor	Х	Х			
Supercritical water-cooled reactor					
Molten salt reactor					
Other (specify here)					
Fusion					
Type of component	Fuel				
Manufacturing method	Ceramic powder	technology, carbothermi	c reduction,		
C		iding, direct synthesis by			
	inert atmosphere				
Joining method	N/A				
Target operational environment	Metal cooled fast	reactors: 600°C – 700°C	cladding		
	temperature, Bur	nup limit ~15 at.% or mo	re.		
	Gas cooled fast re	eactor: Cladding tempera	tures up to		
	1200°C. Burnup li	mit ~15 at.% or more.			
Properties that make the material s	uitable for the targ	get environment			
- Higher fissile density compared to a	oxide fuels				
- High thermal conductivity (~5 times	s higher than oxide): higher margin to meltir	ng, more		
efficient heat transfer to coolant					
- Chemical compatibility with liquid s	sodium				
Open issues to be investigated					
- Influence of composition, microstru	ucture, stoichiomet	ry and impurities (oxyger	n and		
nitrogen primarily) on fundamental a	and safety relevant	thermophysical properti	es: thermal		
conductivity, thermal expansion, me	Iting point, high ter	mperature mechanical pr	operties		
- Evolution of properties with irradia	tion				
- High swelling during irradiation					
References					
References A.K.Sengupta et al. "Carbide Fuel", in in Com		-			
References A.K.Sengupta et al. "Carbide Fuel", in in Com D. Manara et al. "Thermodynamic and Therm	nophysical Properties of	-			
References A.K.Sengupta et al. "Carbide Fuel", in in Com D. Manara et al. "Thermodynamic and Thern Nuclear Materials, Vol 2, 2012, Pages 87-137	nophysical Properties of	f the Actinide Carbides", in Cor			
References A.K.Sengupta et al. "Carbide Fuel", in in Com D. Manara et al. "Thermodynamic and Therm Nuclear Materials, Vol 2, 2012, Pages 87-137 Strategic research agenda of the EERA-JPNM	nophysical Properties of , 2019, <u>http://www.eer</u>	f the Actinide Carbides", in Cor <u>ra-</u>			
References A.K.Sengupta et al. "Carbide Fuel", in in Com D. Manara et al. "Thermodynamic and Therm Nuclear Materials, Vol 2, 2012, Pages 87-137 Strategic research agenda of the EERA-JPNM jpnm.eu/filesharer/documents/Materials%2	nophysical Properties of , 2019, <u>http://www.eer</u> 0for%20Sustainable%20	f the Actinide Carbides", in Cor <u>ra-</u>			
References A.K.Sengupta et al. "Carbide Fuel", in in Com D. Manara et al. "Thermodynamic and Therm Nuclear Materials, Vol 2, 2012, Pages 87-137 Strategic research agenda of the EERA-JPNM jpnm.eu/filesharer/documents/Materials%2 %20SRA%20of%20the%20EERA-JPNM%20-%	nophysical Properties of , 2019, <u>http://www.eer</u> <u>Ofor%20Sustainable%20</u> ;20web%20version.pdf	f the Actinide Carbides", in Cor <u>ra-</u>			
References A.K.Sengupta et al. "Carbide Fuel", in in Com D. Manara et al. "Thermodynamic and Thern Nuclear Materials, Vol 2, 2012, Pages 87-137 Strategic research agenda of the EERA-JPNM jpnm.eu/filesharer/documents/Materials%2	nophysical Properties of , 2019, <u>http://www.eer</u> 0for%20Sustainable%20 20web%20version.pdf in progress	f the Actinide Carbides", in Cor <u>'a-</u> <u>DNuclearEnergy%20-</u>	nprehensive		
References A.K.Sengupta et al. "Carbide Fuel", in in Com D. Manara et al. "Thermodynamic and Thern Nuclear Materials, Vol 2, 2012, Pages 87-137 Strategic research agenda of the EERA-JPNM jpnm.eu/filesharer/documents/Materials%20 %20SRA%20of%20the%20EERA-JPNM%20-% Property improvements required or - Compatibility tests between fuel, cl material dependent)	nophysical Properties of , 2019, <u>http://www.eer</u> 0for%20Sustainable%20 20web%20version.pdf in progress ladding and coolant	f the Actinide Carbides", in Cor <u>'a-</u> <u>DNuclearEnergy%20-</u> t (Carburization of claddin	nprehensive		
References A.K.Sengupta et al. "Carbide Fuel", in in Com D. Manara et al. "Thermodynamic and Thern Nuclear Materials, Vol 2, 2012, Pages 87-137 Strategic research agenda of the EERA-JPNM jpnm.eu/filesharer/documents/Materials%2 %20SRA%20of%20the%20EERA-JPNM%20-% Property improvements required or - Compatibility tests between fuel, cl material dependent) Limited Fabrication/irradiation expen	nophysical Properties of 2019, <u>http://www.eer 0for%20Sustainable%20 20web%20version.pdf</u> in progress ladding and coolant rience, some proces	f the Actinide Carbides", in Cor <u>ra-</u> <u>DNuclearEnergy%20-</u> t (Carburization of claddin ssing challenges:	nprehensive		
References A.K.Sengupta et al. "Carbide Fuel", in in Com D. Manara et al. "Thermodynamic and Thern Nuclear Materials, Vol 2, 2012, Pages 87-137 Strategic research agenda of the EERA-JPNM jpnm.eu/filesharer/documents/Materials%20 %20SRA%20of%20the%20EERA-JPNM%20-% Property improvements required or - Compatibility tests between fuel, ch material dependent)	nophysical Properties of 2019, <u>http://www.eer Ofor%20Sustainable%20 20web%20version.pdf</u> in progress ladding and coolant rience, some proces ation of Pu or MA d	f the Actinide Carbides", in Cor <u>a-</u> <u>DNuclearEnergy%20-</u> t (Carburization of claddin ssing challenges: luring processing	nprehensive		

studies of the oxidation mechanisms) - High-purity inert cover gas required for fuel fabrication, maintenance of C/M ratio difficult, difficult to control oxygen impurities Discolution not simple (larger presence of incoluble platinum group metal, BCM, particles

- Dissolution not simple (larger presence of insoluble platinum group metal –PGM- particles and possible formation of organic compounds)

Technology readiness level5Likeliness of use50%

Other observations

- Relative density 80~90%, grain size ~10 $\mu m.$

List of authors of the ID card

D. Freis (JRC), M. Cologna (JRC), P. Olsson (KTH)

4.5 Nitride fuels

Composition of interest	UN, (U,Pu)N, (U,Pu,MA)N, UN-U ₃ Si ₂ , (U,Zr)N, (Pu,		
	MA,Zr)N, UN-UC	0 ₂ (MA = minor actinide	s Am, Np, Cm)
Type of reactor	Large reactor	SMR (if applicable)	Notes
Light water reactor	Х	Х	UN, UN-U ₃ Si ₂
Heavy water reactor			
Sodium-cooled fast reactor	Х	Х	Driver fuels : UN,
Lead alloy-cooled fast reactor	Х	Х	(U,Pu)N,
Gas-cooled fast reactor	Х		(U,Pu,MA)N
(Very) high temperature reactor	Х		
Supercritical water-cooled reactor	Х		
Molten salt reactor			
Other (specify here): ADS,	Х		(Pu,MA,Zr)N
Space applications			UN and (U,Zr)N
Fusion			
Type of component	Fuel		
Manufacturing method	direct nitriding,	hydriding–dehydriding-	-nitriding,
	carbothermic nit	triding, direct ammono	lysis of uranium
	fluorides, spark	plasma sintering	
Joining method	N/A		
Target operational environment	Metal cooled fas	st reactors: 600°C – 700)°C cladding
	temperature, Bu	rnup limit ~15 at.% or	more.

Properties that make the material suitable for the target environment

Higher fissile density (40% more uranium in UN than in UO₂): enabling one to operate the fuel at a higher linear power, leading to higher conversion ratios and potentially higher burn-ups. May help to reduce the physical size of the core

- Higher thermal conductivity: reduction of the fuel centreline temperature, decrease in the energy stored per unit mass while increasing the margin for fuel melting, and delay the migration of fission products and actinides, which positively affects the fuel swelling
- Good chemical compatibility with most potential cladding materials, as well as irradiation stability.
- Longer fuel cycle time thanks to neutronic behaviour of UN in the core, the fuel cycle could increase from the commonly applied 18 months (standard UO₂) to about 25 months, based on a burnup of 50 GWd/tU. This increase leads to fewer shut downs for reloading, thus being an economical benefit for nitride fuel implementation
- Chemical compatibility with liquid sodium
- The mononitrides of uranium and plutonium are completely miscible
- Good dissolution in nitric acid (HNO₃), making this fuel compatible with the PUREX process, which uses HNO_3 for dissolution of spent fuel. This should lead to an easier reprocessing to reprocess than alternative fuels

References

- Matzke, H. Science of Advanced LMFBR Fuels: Solid State Physics, Chemistry, and Technology of Carbides, Nitrides, and Carbonitrides of Uranium and Plutonium; Elsevier: Amsterdam, Netherlands, 1986.
- Janne , Wallenius, Nitride Fuels, R.J.M. Konings, R.E. Stoller, (Eds.), Comprehensive Nuclear Materials (Second Edition), Elsevier, Oxford, 2020, pp. 88-101
- D. Staicu, R.J.M. Konings, T. Wiss, O. Beneš, C. Guéneau, J. Noirot, Plutonium in Nuclear Fuels, Plutonium Handbook, ISBN: 978-0-89448-201-4, 2019, 2nd Edition, chap. 29, pp. 2312-2321
- C. Ekberg, D. Ribeiro Costa, M. Hedberg, M. Jolkkonen. Nitride fuel for Gen IV nuclear power systems. J Radioanal Nucl Chem 318, 1713–1725 (2018).

- Influence of composition, microstructure, stoichiometry and impurities (oxygen and carbon			
primarily) on fundamental and safety relevant thermophysical properties: thermal			
conductivity, thermal expansion, melting point, high temperature mechanical properties			
- Evolution of properties with irradiation			
- Compatibility tests between fuel, cladding and coolant			
- Limited Fabrication/irradiation experience, some processing challenges:			
- Because the radiotoxic isotope ${}^{14}C$ is formed as a result of the ${}^{14}N(n,p){}^{14}C$ reaction during			
reactor irradiation, the nitride fuel must be fabricated with enriched ¹⁵ N (natural nitrogen			
contains 0.37% ¹⁵ N and 99.63% ¹⁴ N). Because enrichment is relatively costly and an			
enrichment of at least 99% is required, the nitrogen must be recycled during fabrication and			
eventually during reprocessing			
- Pyrophoric, particularly for fine powders. Needs to be handled in inert gas.			
- Oxidation behaviour in different conditions may need further study (e.g. thermochemical			
modelling of the reaction with air and moisture, microstructural studies of the oxidation			
mechanisms)			
 High-purity inert cover gas required for fuel fabrication. Impurity levels well controlled for 			
metal hydride-nitride route; not so well-controlled for carbothermic reduction			
Property improvements required or in progress			
- High swelling during irradiation			
- For deployment of nitrides in LWR environment, improvement of stability of the nitrides in			
water at 300°C by addition of dopant elements or compounds that can form protective layers			
around the grains, such as Cr, ZrO ₂ , Th, into the fuel pellet. Compound UN-UOX fuels are also			
studied.			
Technology readiness level8Likeliness of use90%			
Other observations			
Russia is currently the only country that has an advanced programme on nitride fuels. The			
Russian nuclear fuel manufacturer TVEL develops experimental fuel assemblies made of nitride			
fuel for the BREST and Beloyarsk nuclear power plant (BN) fast neutron reactors. The			
construction of a facility to produce high-density U-Pu nitride fuels has been announced.			
List of authors of the ID card			
T. Wiss, JRC, P. Olsson, KTH			

Open issues to be investigated

4.6 Uranium silicide fuel for LWR

Compositions of interest	U ₃ Si ₂		
Type of reactor	Large reactor	SMR (if applicable)	Notes
Light water reactor	Х		Accident Tolerant Fuel
Heavy water reactor			
Sodium-cooled fast reactor			
Lead alloy-cooled fast reactor			
Gas-cooled fast reactor			
(Very) high temperature reactor			
Supercritical water-cooled reactor			
Molten salt reactor			
Other			
Fusion			
Type of component	Fuel		
Manufacturing method	Powder metallu	rgy techniques: comm	inution of uranium
	silicide ingot, pe	llet pressing and sinte	ring
Joining method	N/A		
Target operational environment	Cladding: Cr-coa	ited Zr alloys or SiC-SiC	composites
 Properties that make the material High Uranium density: 11.3 (g/ Melting temperature: 1665 °C Thermal conductivity: 9-20 W/(that of UO₂ allows the fuel to re and significantly lowers the am LOCA event. References: E. J. Lahoda, F. A. Boylan, Development of I Final Technical Report Deliverable for the W https://doi.org/10.2172/1511013 State-of-the-Art Report on Light Water Rea 2018 	assemblies to be suitable for the t cm ³) (m·K) [300-1200 °C espond to transien ount of energy sto -WR Fuels with Enhan Vestinghouse Accider	C]. The higher thermal nts and prevent centre ored in the core, which ced Accident Tolerance ATI It Tolerant Fuel Program (Ro nt Fuels, Nuclear Energy Age	month fuel cycles. conductivity than line melt conditions n is beneficial in F Feasibility Analysis and ev. 2). 2019. ency report No. 7317,
Fabiola Cappia, Post-Irradiation Examination https://doi.org/10.2172/1773801	ns of the ATF Experin	nents - 2020 Status, Report	INL EXT-20-59619 (2020),
Open issues to be investigated			
• Irradiation of the U_3Si_2 with SiC a		adding is required to d	etermine the
 performance aspects of the fuel a Key issues are swelling, creep , de resistance and interactions betweenvironments 	egradation of ther		
 Development work to allow man stage to reduce the cost of manu 		lirectly from UF ₆ , bypa	ssing the U metal
Property improvements required of	or in progress		

Lead test assemblies (LTA) of Westinghouse EnCore fuel rods containing U₃Si₂ fuel pellets in Crcoated Zr cladding have been loaded into a commercial nuclear power plant (NPP) Exelon's Byron unit 2 (USA) in September 2019. They will stay in reactor for up to six years and will be examined between each refuelling cycle every 18 to 24 months. The fuel will then be used in transient tests to help determine the safe operating limits. LTAs of U₃Si₂ fuel pellets in SiC ceramic matrix composite cladding could be loaded into a reactor by 2022.

-		1	
Technology readiness level	6-7	Likeliness of use	70%
Other observations			
List of authors of the ID card			
V. Grišmanovs (NRG)			

4.7 Uranium silicide fuel dispersed in Al matrix for Material Test Reactors

Compositions of interest	U ₃ Si ₂ (Nominal co	mposition) (LEU: 19.75	% ²³⁵ U)
Type of reactor	Large reactor	SMR (if applicable)	Notes
Light water reactor			
Heavy water reactor			
Sodium-cooled fast reactor			
Lead alloy-cooled fast reactor			
Gas-cooled fast reactor			
(Very) high temperature reactor			
Supercritical water-cooled reactor			
Molten salt reactor			
Other:			MTR
Fusion			
Type of component	Fuel	·	-
Manufacturing method	Fuel plate manuf	acturing process	
Joining method	N/A		
Target operational environment	Plate type config	uration. Cladding (Al all	oy)
	temperature: 70	- 100 °C, typical operati	ing
	temperatures ins	ide the fuel: 100 - 150 °	°C (15-20 % of
	the melting point	:). Peak Burnup targeted	d: 80% ²³⁵ U (4.2
	$\times 10^{21}$ f/cm ³ (fuel	volume), 15% FIMA), Po	ower: 2 kW/gU,
	200 days of resid	ence	
Properties that make the material suit			
 High U-density, needed for conversion of performance 	n from HEU (93% ²	²³⁵ U) to LEU (~19% ²³⁵ U)	without loss
• Excellent irradiation performances at	low power (< 140	W/cm^2) up to high bur	nups, which
resulted in fuel qualification for use in 1313)			•
 Good heat transfer properties, mostl dispersed 	y given by the Al m	atrix in which the U_3Si_2	particles are
Reprocessing of spent fuel available at industrial scale			
Refs:			
A. Leenaers, et al., U-Si Based Fuel System, chap	o. 5.15 of Comprehensi	ve Nuclear Materials (2 nd Edi	tion), Elsevier,
2020, ISBN 9780081028667. Safety Evaluation Report Related to the Evaluat	ion of Low Enriched Lir	anium Silicido Aluminum Die	sporsion Eucl for
use in Non-Power Reactors. NUREG-1313. U.S.C.			spersion ruerior
Open issues to be investigated			
• Fuel behaviour at high power (and te	mperature) and hi	gh loading (volume frac	tion of fuel
phase in Al matrix), including the evo			
 Evolution of fuel plate's thermal cond 	-		
Property improvements required or in		- P	
High power irradiations of high loaded		el plates and post irradi	ation
examinations are currently underway a			
improvements will be evaluated			
Technology readiness level	7-8	Likeliness of use	95%
Other observations	<u> - ~</u>		1.50,0
 Fuel nominal composition is U₃Si₂, but 	t during fabricatio	n and irradiation other	r nhases (LISi
			Pridaca (03),

U₃Si, U,...) may form Fuel amorphization occurs soon after the irradiation starts at the operational temperatures of MTRs (100 - 150 °C). List of authors of the ID card D. Salvato (SCK.CEN)

4.8 Uranium-Molybdenum fuel dispersed in Al matrix for Material Test Reactors

Compositions of interest	U 93 wt.% - Mo 7 w	/t.% (LEU: 19.75% 235U	J)
Type of reactor	Large reactor	SMR (if applicable)	Notes
Light water reactor			
Heavy water reactor			
Sodium-cooled fast reactor			
Lead alloy-cooled fast reactor			
Gas-cooled fast reactor			
(Very) high temperature reactor			
Supercritical water-cooled reactor			
Molten salt reactor			
Other:			MTR
Fusion			
Type of component	Fuel		
Manufacturing method	Fuel plate manufac	turing process	
Joining method	N/A		
Target operational environment	/1 0	ation. Cladding (Al alloy	<i>,</i> ,
		operating temperatures	
	-	25-30 % of the melting p	
		0% ²³⁵ U (6.2 x 10 ²¹ f/cm	• •
		2 kW/gU, 200 days of r	esidence
Properties that make the material sHigh U-density, needed for conver			
 of performance; Good heat transfer properties, mostly given by the AI matrix in which the UMo particles are dispersed; Alloying with Mo stabilizes, upon quenching, the γ-U phase at low temperature, which has better irradiation performance compared to α-U; Fuel crystallinity preserved during irradiation; Predictable fission gas behaviour, with an ordered array of nanobubbles forming at low fission density (unprecedented in a nuclear fuel); Excellent irradiation performances at low/medium power (< 300 W/cm²) up to high burnups References A. Leenaers, et al., U-Mo Based Fuel System, chap. 5.16 of Comprehensive Nuclear Materials (2nd Edition), Elsevier, 2020, ISBN 9780081028667 			
Open issues to be investigated			
• Comprehension of all contribution it can be better predicted;	s to fuel plate swellin	ig at high power (> 300 '	W/cm ²) so that
• Minimization of the interaction be the mechanical integrity of the irra	diated fuel plate at h	igh power and high bur	•
• Evolution of fuel plate's thermal co	•	•	
 Origin of the nanobubble lattice at low burnups is still unknown. Some progresses achieved recently. Specifically designed neutron and/or ion irradiations are required to shed more light onto it. 			
D. Salvato et al., The initial formation stages of a nanobubble lattice in neutron irradiated U(Mo), Journal of Nuclear Materials 529 (2020) 151947			
Property improvements required or	in progress		

- Coating of UMo with inert diffusion barrier (ZrN) and/or adding of Si to the Al matrix to reduce interaction between UMo particles and Al matrix;
- Heat treatment of the UMo particles to delay fuel recrystallization at intermediate-high burnups and, as such, delay the resulting acceleration in fuel swelling rate;
- Development of computer codes to predict fuel plate swelling.

A. Leenaers, et al., ZrN coating as diffusion barrier in UMo dispersion fuel systems, Journal of Nuclear Materials 552 (2021) 153000

Technology readiness level	6-7	Likeliness of use	80%
Other observations			
List of authors of the ID card			
D. Salvato (SCK.CEN)			

4.9 Liquid fuels: molten salts

		<u> </u>		
Compositions of interest	Fluorides of alkali metals and alkaline earth metals optionally mixed with fluorides of actinides.			
	The Li as one of the considered cation is usually enriched in ⁷ Li to			
	minimize the neutron captures on ⁶ Li, whose capture cross-section			
	is large. Detailed composition depends on the foreseen application			
			balance between	
		•	nperature and suffi	cient actinides
	solubilit	•		
		examples:		• • • • • • • • • • • • • • • •
			ition with low melt	ing temperature.
		le as coolant of M		thousal buoodou in Th
		••		thermal breeder in Th-
	-			therefore avoided in
		rmal molten salt r		ASP operated in Th. LI
				/ISR operated in Th-U resonance however
		ses fast neutron s	-	
				on capture probability
			ot be used in therm	
Type of reactor		Large reactor	SMR (if	Notes
Type of redetor		Laige reactor	applicable)	Notes
Light water reactor			appricable/	
Heavy water reactor				
Sodium-cooled fast reactor				
Lead alloy-cooled fast reac				
Gas-cooled fast reactor				
(Very) high temperature re	actor		Х	
Supercritical water-cooled				
Molten salt reactor		Х	Х	sizeable
Other (specify here)				
Fusion		Х		⁶ LiF can be
				considered as tritium
				source in fusion
				blanket
Type of component		Fuel or coolant o	of thermal and fast	spectrum reactors.
·· ·				limited because of F
		•••	•	spectrum area and
		because of limite	ed solubility of triva	alent fluorides, e.g.
			-	o achievable burnup,
		because many so	oluble FPs are also	trivalent.
Manufacturing method		Synthesis/purific	ation of pure com	ponents by
		fluorination (HF,	F2, NF3) powde	r mixing in solid state
Joining method		N/A		
Target operational enviror	ment	Molten Fluorio	de Reactors: 60	00°C – 800°C fuel
		temperature. Lo	ower melting tem	perature for $LiF-BeF_2$
		coolant. Burnup	is limited by solu	bility of respective FPs
		fluorides and	is generally lowe	er than in chlorides.

	Cases and velatile EDs may be constrated from the fuel	
	Gaseous and volatile FPs may be separated from the fuel salt during operation. Carrier salt and actinides fluorides	
	have unlimited life span under irradiation. Accordingly, is	
	also the soluble FPs would be separated, they have	
	unlimited use.	
Properties that make the material su		
	s a function of compositions and its minimization may	
result in lower density)	s a function of compositions and its minimization may	
	h possibility to remove components with high volatility,	
e.g. ZrF ₄ .	r possibility to remove components with high volatility,	
- Reasonable solubility for tetravalen	t actinide fluorides	
-	natrix at high T, ongoing recombination.	
	ral materials, e.g. Hastelloy, which however requires redox	
potential control.		
- Low viscosity		
- Possibility to convect the heat from	active core due to the liquid nature	
Open issues to be investigated		
- Impact of long term corrosion of salt towards structural materials		
- Fundamental properties of selected		
- coupling chemistry with multi-physi		
- Properties change with burn-up		
- Trivalent actinide fluorides solubility	۷.	
- FPs solubility limits at high burnups.	•	
- Tritium management in case of LiF-I		
- Reprocessing scheme and related sa	afeguards.	
- Redox potential control and online	monitoring.	
Property improvements required or	in progress	
Fuel composition optimizations are o	ngoing as MSR's allow variety of salt variations based on	
targeted concept (burner, breeder, fa	ast, thermal, etc.)	
Technology readiness level	3 Likeliness of use 70	
Other observations		
List of authors of the ID card		
O. Benes (JRC), J. Krepel (PSI)		
· · · · · ·		

Compositions of interest	 Chlorides of actinides, chlorides of alkali metals and alkaline earth metals, and mixture of previous. The chlorine is usually enriched in ³⁷Cl to minimize the neutron captures on ³⁵Cl, whose capture cross-section is large; at the same time under 			
	revision. Composition depends on the foreseen fuel cycle type and usually targets balance between neutronic performance, liquidus temperature and chemical stability. Reference salt: NaCl-UCl ₃ -PuCl ₃ : high neutronic performance, density competing with liquidus temperature, which is minimal around 65% mol of NaCl.			
	Alternative additive cations with slightly higher neutron capture probability are Mg, K, and Ca. These are usually not foreseen for a breeder or breed-and-burn reactor.			
Type of reactor		Large reactor	SMR (if applicable)	Notes

Light water reactor				
Heavy water reactor				
Sodium-cooled fast reactor				
Lead alloy-cooled fast reactor				
Gas-cooled fast reactor				
(Very) high temperature reactor				
Supercritical water-cooled reactor				
Molten salt reactor	Х	Х	sizeable	
Other (specify here)				
Fusion				
Type of component	Fuel or coolant of	fast spectrum reactor.	Chlorides are	
		hermal spectrum beca		
		pture probability. Fron		
	-	re avoided, because of		
		r (Be) and scattering re		
	•	Applicability of chloric		
		ed and may result in ve		
Manufacturing method		tion of pure componer		
			•	
	chlorination (Cl ₂ , CCl ₄) for chlorides; powder mixing in solid state			
Joining method	N/A			
Target operational environment	Molten Chloride Reactors: 500°C – 800°C fuel			
raiget operational environment				
	temperature, burnup is limited by solubility of respective FPs chlorides and is generally higher than in			
	fluorides. Gaseous and volatile FPs may be separated			
	from the fuel salt during operation. Carrier salt and			
	actinides chlorides have unlimited life span under			
	irradiation. Accordingly, is also the soluble FPs would be			
	separated, they have unlimited use.			
Properties that make the material suitable for the target environment				
- Low melting points (melting point is			tion may result	
in lower density and actinide content)			ition may result	
- Low vapour pressure combined with		e components with hi	gh volatility	
			gir volatility.	
 Reasonable solubility for actinide chlorides No thermal decomposition of fuel matrix at high T, ongoing recombination. 				
- No thermal decomposition of fuel matrix at high 1, ongoing recombination. - Chemical compatibility with structural materials, e.g. stainless steel, which however requires				
redox potential control.				
- Low viscosity				
 Possibility to convect the heat from active core due to the liquid nature Open issues to be investigated 				
· · ·	towards structural	materials		
 Impact of long term corrosion of salt towards structural materials Fundamental properties of selected fuel salt composition 				
- Properties change with burn-up		1		
- FPs solubility limits at high burnups.				
 Reprocessing scheme and related safeguards. Redox potential control and online monitoring. 				
	-			
Property improvements required or u	-	wyarioty of calt variati	one based on	
Fuel composition optimizations are or		w variety of salt variati	ons based on	
targeted concept (burner, breeder, fag	st, thermal, etc.)			

Technology readiness level	3	Likeliness of use	70
Other observations			
List of authors of the ID card			
O. Benes (JRC), J. Krepel (PSI)			

Composition of interest	(U,Pu,Am,Np)O ₂ As-fabricated: Pu content between 20				
		tio between 1.93 and	-		
Type of reactor	Large reactor	SMR (if applicable)	Notes		
Light water reactor					
Heavy water reactor					
Sodium-cooled fast reactor	X	Potentially	Scarce exp. data		
Lead alloy-cooled fast reactor	X	currently			
Gas-cooled fast reactor	X Potentially available				
(Very) high temperature reactor	X	Potentially	experiences in SMRs.		
Supercritical water-cooled reactor					
Molten salt reactor					
Other (specify here)					
Fusion					
Type of component	Fuel				
Manufacturing method	Ceramic powder	technology			
Joining method	N/A				
Target operational environment	Same of fast-read	ctor MOX: cladding ten	nperature ~ 600-		
	650°C, fuel opera	ting temperatures ~ 8	0% of the melting		
		n-up ~ 150 GWd/t (~ 20	-		
		ence, intense flux (~ 10			
		nergy neutrons (> MeV			
Properties that make the material s			<i>.</i>		
Common with fast-reactor MOX					
- high melting point (degrading with	burn-un: down to '	~ 2950 K at ~ 100 GWd	/+)		
- no allotropic changes, high micro-s		2550 Kat 100 GWa	/ </td		
- behaviour under irradiation: lower		other fuels			
	Sweinig rate than				
References: - Y. Guerin, "Fuel Performance of Fast Spectr	rum Ovida Eual" in: Ca	mprohansiva Nuclear Mater	ials Chan 2 21		
Elsevier, 2012, ISBN 978-0-08-056027-4	rum Oxide Fuer , in: Col	inprenensive Nuclear Mater	iais, chap. 2.21,		
- F. Delage et al., "Actinide-Bearing Fuels and	d Transmutation Target	s", in: Comprehensive Nucle	ear Materials (Second		
Edition), Chap. 5.19, Elsevier, 2020, ISBN 978	_	<i>,</i> ,	,		
Open issues to be investigated					
- Margin to fuel melting: evolution of	of thermal properti	es under irradiation (th	nermal		
conductivity, melting point, impac	t of Am, Np conten	ts besides O/M effect)			
- Knowledge of irradiation defects:	evolution with fuel	burn-up			
- Evolution of composition: Pu reloc	ation and O/M vari	ation			
- Evolution of microstructure: high b	ournup structure (H	BS)?			
- Fission gas and helium behaviour					
	products				
- Transport of non-gaseous fission p		ion creen (thermal an	d irradiation-		
 Transport of non-gaseous fission p Mechanical fuel-cladding interactivity induced) 	on: thermal expans				
- Mechanical fuel-cladding interaction			iine (JOG),		
 Mechanical fuel-cladding interaction induced) Chemical fuel-cladding interaction 			iine (JOG),		
 Mechanical fuel-cladding interaction induced) Chemical fuel-cladding interaction Reaction Oxyde-Gaine (ROG) 			iine (JOG),		
 Mechanical fuel-cladding interaction induced) Chemical fuel-cladding interaction Reaction Oxyde-Gaine (ROG) Fuel/coolant compatibility issues 	: inner cladding cor	rosion, Joint Oxyde-Ga	iine (JOG),		
 Mechanical fuel-cladding interaction induced) Chemical fuel-cladding interaction Reaction Oxyde-Gaine (ROG) 	: inner cladding cor ulti-recycling conte	rosion, Joint Oxyde-Ga xt)			

4.10 Minor actinide bearing driver fuels for fast reactors

- Corium composition and properties			
References:			
- D.R. Olander, "Fundamental aspects of nuclear reactor fuel elements", Technical information center, Energy			
Research and Development Administration, 1985, doi:10.2172/7343826			
- Strategic research agenda of the EERA-JPNM, 2019, <u>http://www.eera-</u>			
jpnm.eu/filesharer/documents/Materials%20for%20Sustainable%20NuclearEnergy%20- %20SRA%20of%20the%20EERA-JPNM%20-%20web%20version.pdf			
Property improvements required or underway ^{iError!} Marcador no definido.			
- Optimize fabrication to yield the highest material homogeneity, optimize multi-recycling			
process (in common with fast-reactor MOX)			
- Investigation and mitigation of cladding corrosion in case of interaction fuel-cladding (in			
common with fast-reactor MOX)			
- Further assess impact of homogeneous minor actinides < 5%: really negligible? (on thermal			
properties: thermal conductivity, melting temperature)			
Technology readiness level 3 Likeliness of use 30%			
Other observations			
- Likeliness of use: low, due to current limited plans for MA-MOX fuel use as driver fuel (e.g., in			
Gen-IV concepts). Possibly in MYRRHA for transmutation studies, but first steps should employ			
U-Pu MOX, then Am-MOX pins in experimental positions (not as driver fuel).			
- Effects of homogeneous minor actinides (Am, Np < 5%) currently deemed limited, hence			
material properties and behaviour assumed equal to U-Pu MOX (same Pu content).			
- Current knowledge from MOX irradiated in past fast reactors / experimental facilities.			
Improvement needed to take into account new reactor designs (Gen-IV) and more stringent			
safety constraints.			
- MA-MOX irradiations reported in literature:			
- SUPERFACT-1 (Phénix): Am-MOX and Np-MOX, homogeneous (Am, Np ~ 2%) and			
heterogeneous (Am, Np ~ 50%)			
- SPHERE (HFR): homogeneous Am-MOX (Am ~ 3%)			
- MARINE (HFR): heterogeneous Am-MOX (Am ~ 15%)			
Reference:			
- J. Babelot, N. Chauvin, "Joint CEA/JRC Synthesis Report of the Experiment SUPERFACT 1", Report JRC-ITU-TN-99/03,			
1999			
- E. D'Agata et al., "SPHERE: Irradiation of sphere-pac fuel of UPuO _{2-x} containing 3% Americium", Nuclear Engineering			
and Design 275 (2014) 300-311			
- E. D'Agata et al., "The MARINE experiment: Irradiation of sphere-pac fuel and pellets of UO _{2-x} for americium breading blanket concept", Nuclear Engineering and Design 311 (2017) 131-141			
- A. Gallais-During et al., "Outcomes of the PELGRIMM project on Am-bearing fuel in pelletized and sphere-pac			
forms", Journal of Nuclear Materials 512 (2018) 214-226			
List of authors of the ID card			
Alessandro Del Nevo (ENEA), Alessio Magni (Polimi, ENEA)			

(U,Am)O₂. As-fabricated: Am content up to 30%; O/M ratio **Composition of interest** between 1.93 and 1.99 SMR (if applicable) Type of reactor Large reactor Notes Light water reactor Heavy water reactor Sodium-cooled fast reactor Х Potentially Scarce exp. data currently Х Potentially Lead alloy-cooled fast reactor available, no Gas-cooled fast reactor Х Potentially experiences in (Very) high temperature reactor SMRs. Supercritical water-cooled reactor Molten salt reactor Other: ADS **MYRRHA** Fusion Type of component Americium Bearing Blanket Manufacturing method Powder metallurgy, sol-gel and ion exchange Weak Acid Resin (WAR) technologies Joining method N/A **Target operational environment** Properties that make the material suitable for the target environment Common with fast-reactor MOX and homogeneous MA transmutation fuel - high melting point - no allotropic changes, micro-structural stability References: - F. Delage, L. Ramond, A. Gallais-During, S. Pillon, 5.19 - Actinide-Bearing Fuels and Transmutation Targets, in: R.J.M. Konings, R.E. Stoller (Eds.), Comprehensive Nuclear Materials (Second Edition), Elsevier, Oxford, 2020: pp. 645-683. https://doi.org/10.1016/B978-0-12-803581-8.12049-1. - E. Epifano et al., Melting behaviour of uranium-americium mixed oxides under different atmospheres, The Journal of Chemical Thermodynamics. 140 (2020) 105896. https://doi.org/10/gh4tvr. - E. Epifano, Study of the U-Am-O ternary phase diagram, Ph.D. thesis, Université Paris-Saclay, 2017. https://pastel.archives-ouvertes.fr/tel-01852208/document . - T. Kooyman, Current state of partitioning and transmutation studies for advanced nuclear fuel cycles, Annals of Nuclear Energy. 157 (2021) 108239. https://doi.org/10/gm82cc. Open issues to be investigated^{iError! Marcador no definido.} - Knowledge of irradiation defects: evolution with fuel burn-up - Evolution of composition: O/M variation - Evolution of microstructure : open and closed porosity - Helium behaviour - Mechanical fuel-cladding interaction: thermal expansion, creep (thermal and irradiationinduced) - Better knowledge of the U-Am-O phase diagram => O/M control and assessment - lack of data on thermal properties - self-irradiation (prior irradiation) References: - Strategic research agenda of the EERA-JPNM, 2019, http://www.eerajpnm.eu/filesharer/documents/Materials%20for%20Sustainable%20NuclearEnergy%20-%20SRA%20of%20the%20EERA-JPNM%20-%20web%20version.pdf Property improvements required or underway^{iError! Marcador no definido.}

4.11 Minor actinide bearing blanket fuels

with O/M < 2.00 with Am < 30 %				
- microstructure optimization (open	• •	nd elemental distributi	ion homogeneity)	
- Helium behaviour for various Am co	ontents			
- Evaluation and investigation of clad	lding corrosion in c	ase of interaction fuel	-cladding	
- Thermal properties: thermal condu	ctivity, Emissivity, I	melting temperature, I	heat capacity	
- Alpha self-irradiation effect				
Technology readiness level	3	Likeliness of use	?	
Other observations	•			
- Am Bearing Blanket irradiations rep	orted in literature:			
- MARIOS (HFR): Am _{0.15} U _{0.85} O _{1.94} (dense 92.5% and o	pen porosity 88%) [1,2	2,3]	
- DIAMINO (OSIRIS) : Am _{0.15} U _{0.85} O				
- SUPERFACT 1 : U _{0.60} Np _{0.20} Am _{0.20} ,				
- SPHERE (HFR): (U _{0.9} Am _{0.1})O _{2-x} [8]				
- MARINE (HFR) : U _{0.87} Am _{0.13} O _{1.935}		9]		
References:	0.00 0.14 1.55 1	-		
	O2 containing $1E0/com/$	visium at wall defined tom	poratura Nuclear	
[1] E. D'Agata et al, MARIOS: Irradiation of U Engineering and Design. 242 (2012) 413–419	_		iperature, Nuclear	
[2] E. D'Agata et al, The results of the irradiat			tion. Annals of	
Nuclear Energy. 62 (2013) 40–49. https://doi	•		,	
[3] D. Prieur, et al., B. Philippe, Fabrication and characterisation of U0.85Am0.15O2–x discs for MARIOS irradiation				
program, Journal of Nuclear Materials. 414 (2				
[4] S. Bejaoui et al., Description and thermal simulation of the DIAMINO irradiation experiment of transmutation fuel				
in the OSIRIS reactor, Progress in Nuclear Energy. 113 (2019) 28–44. <u>https://doi.org/10/gm8wdk</u> .				
[5] C. Prunier et al., Some specific aspects of homogeneous Am and Np based fuels transmutation through the outcomes of the Superfact experiment in Phenix fast reactor, in: Global '93: International Conference and				
Technology Exhibition, Seattle, 1993.				
[6] J. Babelot, N. Chauvin, "Joint CEA/JRC Synthesis Report of the Experiment SUPERFACT 1", Report JRC-ITU-TN-				
99/03, 1999				
[7] L. Luzzi et al., Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor				
irradiation experiment, Nuclear Engineering and Technology. 53 (2021) 3367–3378. <u>https://doi.org/10/gm82d8</u> .				
[8] A. Gallais-During et al., Outcomes of the PELGRIMM project on Am-bearing fuel in pelletized and sphere-pac forms, Journal of Nuclear Materials. 512 (2018) 214–226. <u>https://doi.org/10/gm82dp</u> .				
[9] E. D'Agata et al., The MARINE experiment: Irradiation of sphere-pac fuel and pellets of UO2–x for americium				
breading blanket concept, Nuclear Engineerin				
List of authors of the ID card	- `			
Philippe MARTIN (CEA), Thierry WISS	(JRC)			
	. /			

5. Concrete

Coordinator: Miguel Ferreira, VTT

Concrete is a heterogeneous material composed of cement binder, fine aggregates (sand) and coarse aggregates mixed with water which hardens with time. There is an extremely large variety of compositions depending on the types of cement and aggregates, as well as their proportions. Furthermore, certain admixtures can be added to the mixing process that enhance certain fresh and/or hardened concrete properties (e.g. plasticizer for workability in the fresh state; air entrainment for resistance of hardened concrete in freezing environments).

Reinforced concrete structures in NPPs are composed of several constituents, including concrete, conventional steel reinforcement, pre-stressed steel, steel liner plates, and structural steel. While unique in application, they share many physical characteristics with conventional concrete structures. Experience shows that ageing degradation of reinforced concrete structures can be a result of exposure to aggressive environments, excessive structural loads, accidental conditions, use of unsuitable materials, poor material and construction quality, and the lack of or inadequate maintenance. As concrete ages, changes in its properties will occur naturally as a result of continuous microstructural changes (e.g., due to cement hydration, crystallization of amorphous constituents, reactions between cement pore solution and aggregates, etc.), as well as environmental interaction leading to adverse performance of the cement paste matrix and aggregates under physical or chemical attack (e.g., internal expansion, cracking, leaching etc.).

The cards in this section detail for each ageing or degradation mechanism affecting concrete the practical consequences of this mechanism and the R&D efforts made and needed on materials aspects monitoring and structural modelling.

Concrete structures types	Importance level			
	Insignificant	Slight	Medium	High
Containment with metallic liner				Х
Containment without metallic liner				Х
Cooling towers			Х	
Spent fuel pools	X			
Water intake/outtake structures	X			
Concrete pipe	X			
radioactive waste package				Х
Structural anchorages	X			
Foundations, piles and	X			
underground structures				
Pedestal of reactor vessel		Х		
Practical consequences for Long Ter	m Operation			

5.1 Temperature effects on delayed deformation and damage

Practical consequences for Long Term Operation

At early age, containment buildings and radioactive packages experience restrained shrinkage or thermal expansion which can lead to cracking or initiate it. In the case of containment buildings, prestressing tendons are put after concrete hardening. Early age cracks are closed under the compressive effects of prestressing tendons. During ageing phase, containment building experience drying, shrinkage and creep at moderate temperature too (40°C in intrados). Delayed strain (shrinkage and creep) induces prestress loss and leakage increasing (when there are no metallic liner) in containment building. The loss of prestressing force increases at elevated temperatures due to increases in the relaxation of steel and volumetric changes of concrete (i.e. creep and shrinkage).

Temperature has significant effect on creep. Creep and shrinkage are accelerated when temperature is increased, both if drying is prevented (basic creep) and also if drying is allowed (desiccation shrinkage and desiccation creep). In the case where drying is allowed, a significant part of this kinetics increase is due to the acceleration of drying at higher temperature. When heating is applied shortly after loading, additional strains occur compared to the case where heating is applied and equilibrated before loading. These additional strains are called thermal transient strains.

For moderate temperature, efficient and well validated empirical models for finite element computations are available. These models, however, need to be calibrated on laboratory data (which is almost never available for existing containment buildings), on monitoring data (which is often available for containment buildings), or on predictions of the material behaviour of concrete (for which some models exist but are insufficiently validated).

For accidental phases and particular operational situations involving exposition of concrete to temperatures up to 150°C, experimental data lacks and the material modelling is less mature.

References:

- D. Jacques et al., Overview of state-of-the-art knowledge for the quantitative assessment of the ageing/ deterioration of concrete in nuclear power plant systems, structures and components. Deliverable D1.1 H2020 ACES Project (2021)
- IAEA Nuclear Energy Series, Ageing Management of Concrete Structures in Nuclear Power Plants, No. NP-T-3.5
- Z. P. Bažant et M. Jirásek, Creep and hygrothermal effects in concrete structures, Dordrecht, The Netherlands: Springer, 2018.
- Laurent Granger, Comportement différé du béton dans les enceintes de centrales nucléaires : Analyse et modélisation (in French), PhD Thesis ENPC, 1995
- A. Neville, W. Dilger et J. Brooks, Creep of plain and structural concrete, London: Construction press, Longman group, 1983.

- H. Cagnon, T. Vidal, A. Sellier et J. M. Torrenti, «Transient thermal creep at moderate temperature,» <i>Key Engineering</i>
Materials, vol. 711, 2016. - CANADIAN STANDARDS ASSOCIATION, Concrete Materials and Methods of Concrete Construction/Test Methods and
Standard Practices for Concrete, CSA A23.1-09/A23.2-09, CSA, Toronto (2009).
- ANDERSON, P., Thirty Years of Measured Prestress at Swedish Nuclear Reactor Containments, Nucl. Eng. Des. 235
(2005).
- LUNDQVIST, P., Nuclear Reactor Containments: Evaluation of Prestress Losses and Prediction Models, 3rd FIB Int.
Congress Inc. the PCI Annual Conv. and Bridge Conf., Precast Prestressed Concrete Institute, Washington, DC (2010).
R&D focusing on materials aspects (modelling, characterization, novel binders and mix designs)
- Development of micromechanical models for prediction of concrete properties (drying,
shrinkage, creep and damage) from concrete mix proportions at moderate temperature to
overcome the lack of data on real concrete containment buildings for phenomenological
models calibration
- Experimental investigation of concrete behaviour (drying, shrinkage, creep and damage) at
elevated temperature (up to 150°C)
- Development of calibrated and validated phenomenological models for concrete behaviour
(drying, shrinkage, creep and damage) at elevated temperature (up to 150°C)
- Experimental investigation at structural scale of massive structure under temperature and
pressure effects (150°C and 5.2 bars for Containment building and 50°C/30% for radioactive
waste package)
R&D focusing on Non-destructive testing, monitoring, structural assessment
- Development of distributed extensometry techniques for temperature and strain measurement
- Development of water content sensor for structural application
- Development of Non-destructive testing (NDT) for evaluation of prestressing in tendons
injected with cement grout and / or in concrete
- Development of digital image correlation technique for large structure application
R&D focusing on structural modelling
- Development of modelling approach for damage of massive structure at early age for getting
initial stress state and initial crack
- Development of modelling approach for damage of structure in accidental situation
- Development of modelling approach for air-vapour leakage of containment building in
accidental situation
- Development of digital twin approach for Ageing Management and optimization of Long Term
Operation, to ensure that the concrete component withstand and to estimate air-vapour leakage
in severe accident situation
Other observations
-
List of authors of the ID card

Jean-Luc ADIA (EDF), Charles TOULEMONDE (EDF), Nhu-Cuong TRAN (EDF)

5.2 Corrosion

Concrete structures types	Risk level			
	Insignificant	Slight risk	Medium risk	High risk
Containment with metallic liner				Х
Containment without metallic	Х			
liner				
Cooling towers				Х
Spent fuel pools			Х	
Water intake/outtake structures			Х	
Concrete pipe				Х
radioactive waste package			Х	
Structural anchorages			Х	
Foundations, piles and		Х		
underground structures				
Pedestal of reactor vessel		Х		
Practical consequences for Long To	orm Operation	•		

Practical consequences for Long Term Operation

Corrosion is the main degradation mechanism for concrete components within NPPs (containment structure, cooling towers, concrete pipe). Concrete has limited capacity for plastic deformation and absorption of mechanical energy. Reinforcing bar (rebar) is typically installed in locations where tensile stresses are anticipated to address this. Fortunately, rebar and concrete are mutually compatible. They have similar coefficients of thermal expansion, and the relatively high pH of the concrete pore water (pH~12.5–13.6) contributes to the formation of an oxide film that passivates steel against corrosion. In some cases (containments or pipes for instance), metallic liner is embedded in concrete to enhance the leak tightness function of the structure. Disruption of the passive film can, however, occur due to leaching of alkaline substances by water or carbonation (reduction of pH) or chloride intrusion (destabilization of passive layer).

When metallic iron is transformed into ferric oxide (rust) by corrosion, its volume increases and can initiate cover concrete cracking. Because corrosion is fairly uniform, such cracking usually occurs prior to a particular structural cross-section becoming excessively weak, thus giving a visual warning of deterioration. Occasionally, however, cover spalling occurs before any surface signs of deterioration are visible. Structural strength and serviceability are only reduced and jeopardized when rebar corrosion causes a significant loss of steel cross-section, or there occurs a loss of bond between steel and concrete. For the particular case of liner plates, localized corrosion leading to a loss of leak tightness is of most concern.

References:

- IAEA Nuclear Energy Series, Ageing Management of Concrete Structures in Nuclear Power Plants, No. NP-T-3.5
- ERLIN, B., VERBECK, G.J., Corrosion of Metals in Concrete Needed Research, Corrosion of Metals in Concrete, SP-49, American Concrete Institute, Farmington Hills, MI (1975).
- MEHTA, P.K., GERWICK, J.B.C., Cracking-corrosion interaction in concrete exposed to marine environment, Concr. Int. 4 10 (1982) 45–51.
- BUILDING RESEARCH STATION, The durability of steel in concrete: Part 2 Diagnosis and assessment of corrosion-cracked concrete, Build. Res. Establishment Dig. 26 (1982).
- RASHEEDUZZAFAR, AL-SAADOUN, S.S., AL-GAHTANI, A.S., Corrosion cracking in relation to bar diameter, cover, and concrete quality, J. Mater. Civ. Eng 4 4 (1992) 327–341.

R&D focusing on materials aspects (modelling, characterization, novel binders and mix designs)

In the case of corrosion by carbonation, it is very important to know when the carbonation front has reached the reinforcement bed or the liner, how much time is available before the corrosion begins. Experimental work and models allowing one to bring elements are desired.

Further understanding is required with regard to which materials may play a role in mitigating

this corrosion, for both application to maintain performance of existing structures as well as application to ensure performance in new or planned structures (e.g., chemical treatments vs the influence of new concrete raw materials).

R&D focusing on Non-destructive testing, monitoring, structural assessment

- Improved monitoring techniques (e.g., drone image analysis) are needed to facilitate acquisition of adequate field data to support material and modelling aspects.

- Improved non-destructive testing (NDT) techniques are needed to facilitate correlation between laboratory results (e.g., particularly accelerated testing) and actual material performance, particularly for processes such as corrosion where damage may not be readily evident from inspections of the external surface alone.

R&D focusing on structural modelling

- Improved models for each type of corrosion (e.g., crack, crevice, etc.) are required to improve the link between fundamental understanding of corrosion mechanisms and structural performance.

- Improved models for concrete to incorporate the impacts of corrosion and coupling with other processes for quantitative, holistic damage assessments (e.g. impact of corrosion on leak tightness of containment)

Other observations

List of authors of the ID card

Jean-Luc ADIA (EDF), Charles TOULEMONDE (EDF), Nhu-Cuong TRAN (EDF), Tandré OEY (VTT)

5.3 Endogenous reactions

Concrete structures types	Risk level			
	Insignificant	Slight risk	Medium risk	High risk
Containment with metallic liner			Х	
Containment without metallic			Х	
liner				
Cooling towers		Х		
Spent fuel pools	Х			
Water intake/outtake structures	Х			
Concrete pipe		Х		
radioactive waste package	Х			
Structural anchorages	Х			
Foundations, piles and				Х
underground structures				
Pedestal of reactor vessel			Х	
Practical consequences for Long Te	erm Operation			

Delayed Ettringite Formation (DEF) is a special case of internal sulphate attack. It occurs when internal or external sulphates react with anhydrous or hydrated calcium aluminates and has an expansive character. Such an expansion is not a concern in fresh concrete but can induce cracking in hardened concrete and also increase the risk of secondary forms of deterioration such as reinforcement corrosion. DEF is a result of high early temperatures (above 70°C) in concrete which prevents the normal formation of ettringite (a normal product of early cement hydration) or the decomposition of ettringite that has been already formed. If structures susceptible to DEF are later exposed to water, ettringite can be formed again in the cement paste, causing expansive forces that result in cracking. Elevated temperatures also increase potential for damage due to DEF. DEF process leads to degradation of mechanical properties such as compressive strength and can promote increased permeability.

Some siliceous and dolomitic aggregates can react with the alkali hydroxides in concrete, causing expansion and cracking over a period of many years. This alkali-aggregate reaction has two forms: Alkali-Silica Reaction (ASR) and Alkali-Carbonate Reaction (ACR). In an ASR, alkali ions form a calcium alkali-silicate gel. This gel takes up pore solution water due to the attractive forces between polar water molecules and alkali-silicate gel. ASRs have been observed in NPP concrete structures in Belgium, Canada, USA and Japan.

References

IAEA Nuclear Energy Series, Ageing Management of Concrete Structures in Nuclear Power Plants, No. NP-T-3.5

R&D focusing on materials aspects (modelling, characterization, novel binders and mix designs)

- Extension of basic understanding of each process to conditions relevant to nuclear materials is needed, especially in the case of Alkali Aggregate Reactions (AAR) - due to prolonged radiation exposure aggregate susceptibility to AAR might increase.

- Adaptation of current understandings of cement and concrete chemistry to new raw materials, especially novel binders other than traditional cement, is required to both improve the sustainability of the nuclear structural materials and take advantage of the notable benefits of such alternate materials (e.g., reduced permeability, potentially improved stability under irradiation, etc.).

- Development of data base on DEF and ASR at room and high temperature

- Development of micromechanical models to understanding damage due to expansion induced by DEF or ASR

- Development of calibrated and validated phenomenological models for DEF or ASR kinetics and damage induced to feed structural application

R&D focusing on Non-destructive testing, monitoring, structural assessment

- Improved NDT monitoring, for a wide range of concrete properties, especially length change and water content, is needed to support both research on material/structural aspects and modelling.

- Improved frequency of monitoring, and/or use of automated (drone) monitoring paired with machine learning for image analysis, is needed to improve relevance of laboratory and accelerated tests for field performance, particularly in the case of deterioration mechanisms that are evidenced by visible surface cracking (e.g., alkali-aggregate reaction).

- Development of distributed extensometry techniques for temperature and strain measurement

- Development of NDT for evaluation of prestressing in tendons injected with cement grout and / or in concrete

- Development of digital image correlation technique for large structure application

R&D focusing on structural modelling

- Development of modelling approaches for damage induced by DEF or ASR are required, to establish the links between chemical effects and mechanical deterioration.

- Extension of basic models to structural scale, both in terms of environmental and loading effects, is required to accurately model such processes in the nuclear context.

- Extension of basic models to couple with concurrent deterioration processes, at the necessary scales, are also required.

- Synergy with monitoring and material aspects will be of the utmost importance to achieve practically relevant results.

Other observations

List of authors of the ID card

Jean-Luc ADIA (EDF), Charles TOULEMONDE (EDF), Nhu-Cuong TRAN (EDF), Tandré OEY (VTT)

5.4 Irradiation

Concrete structures types	Importance level			
	insignificant	Slight	Medium	High
Containment with metallic liner		Х		
Containment without metallic		Х		
liner				
Cooling towers	Х			
Spent fuel pools	Х			
Water intake/outtake structures	Х			
Concrete pipe	Х			
Radioactive waste package				Х
Structural anchorages	Х			
Foundations, piles and	Х			
underground structures				
Pedestal of reactor vessel				Х
Practical consequences for Long Te	erm Operation			•

Changes in concrete properties due to irradiation appear to depend primarily on the aggregates used, the volume of which is affected by irradiation. Fast neutrons are mainly responsible for expansion caused by atomic displacements in certain aggregates. Quartz aggregates containing crystals with covalent bonds are more affected by radiation than calcareous aggregates containing crystals with ionic bonds. When nuclear radiation is attenuated or absorbed in the concrete, almost all absorbed radiation is converted into heat, impacting concrete physical, mechanical and nuclear properties. Irradiation effects on concrete are:

- Decrease in tensile and compressive strengths and modulus of elasticity,

- Resistance of concrete to neutron radiation depends on mix proportions, type of cement and type of aggregate,

- Deterioration of concrete properties associated with a temperature rise resulting from irradiation is relatively minor,

- Irradiated concrete's coefficients of thermal expansion and conductivity differ little from those of temperature exposed concrete.

- When exposed to neutron irradiation, concrete's elasticity modulus decreases with increasing neutron fluence.

- Concrete creep is not affected by low level radiation exposure, but for high levels of exposure, creep would probably increase because of the effects of irradiation on tensile and compressive strength.

- Gamma rays produce radiolysis of water in cement paste that can affect concrete's creep and shrinkage behaviour to a limited extend and also result in the evolution of gas.

References:

IAEA Nuclear Energy Series, Ageing Management of Concrete Structures in Nuclear Power Plants, No. NP-T-3.5

R&D focusing on materials aspects (modelling, characterization, novel binders and mix designs)

- Refinement of micromechanical models for understanding aggregate expansion induced by irradiation effects on concrete is needed to adequately incorporate these processes in basic design of nuclear concretes.

- Improved understanding is needed of the effects of both relatively lower dose yet longer term radiation exposures to extend fundamental understanding of radiation interactions to the mesoand macro-scale impacts they have on both chemical and physical degradation processes.

- Improved data management is needed to create a standardized, easily accessible database of relevant concrete and environmental data, to address shortfalls in such data available to

modelling efforts, particularly with regard to the evolving state of knowledge surrounding lowdose radiation exposure, gamma radiation, and sustained exposure in waste packages.

R&D focusing on Non-destructive testing, monitoring, structural assessment

Improved NDT monitoring, for a wide range of concrete properties, especially length change and water content, is needed to support both research on material aspects and modelling.
Improved frequency of monitoring, and/or use of automated (drone) monitoring paired with machine learning for image analysis, is needed to improve relevance of laboratory and accelerated tests to field performance, particularly in the case of deterioration mechanisms that are evidenced by visible surface cracking (e.g., alkali-aggregate reaction).Development of digital image correlation technique for large structure application

R&D focusing on structural modelling

- Development of a modelling approach to incorporate the wide range of relevant irradiationinduced deterioration mechanisms for massive structures is needed (e.g., thermal stress, chemical alteration, etc.).

- Development of models for the changing penetration rate of radiation in the deteriorating concrete is needed to adequately capture the time-dependence of deterioration under relevant field conditions.

Other observations

List of authors of the ID card

Jean-Luc ADIA (EDF), Charles TOULEMONDE (EDF), Nhu-Cuong TRAN (EDF), Tandré OEY (VTT)

Concrete structures types		Import	ance level	
	Insignificant	Slight	Medium	High
Containment with metallic liner	X			
Containment without metallic liner	X			
Cooling towers			Х	
Spent fuel pools	X			
Water intake/outtake structures	X			
Concrete pipe	X			
radioactive waste package				Х
Structural anchorages	X			
Foundations, piles and			Х	
underground structures				
Pedestal of reactor vessel	X			
Practical consequences for Long Ter	m Operation			

5.5 Reactive transport processes in concrete

Practical consequences for Long Term Operation

The majority of the mechanisms affecting concrete durability involve reactive transport phenomena, i.e. they involve the transport of chemical species and their reaction with the hydrated phases of the cement. The main consequences are mineralogical and microstructural modifications that can induce deformations and therefore cracking which in turn can impact on transport. Among the most usually encountered degradation processes are:

- Carbonation: reaction between atmospheric CO₂ and the Ca ions leading to the precipitation of CaCO₃ and dissolution of Ca-bearing phases. In addition to rebar corrosion, carbonation induces significant changes in mineralogy and microstructure and generates shrinkage and cracking

- Ca-leaching: when in contact with water, Ca is washed away and leached from the concrete surface. This induces the dissolution of Ca-bearing phases (portlandite, C-S-H). The main consequences are increase in porosity, coarsening of the pore-structure, significant strength loss and eventually decalcification shrinkage and cracking

- Multi-ionic attack: when the leaching water contains ions, these can react with the hydrates to impact on the mineralogy and microstructure. For example, contact with water containing chlorine and magnesium can form chlorinated phases (Kuzel's/Friedel's salt, Ca oxychloride) or M-S-H (whose impact on strains and strength remains an open issue)

- External sulphate attack: Similar to DEF, external sulphate attack corresponds to the reaction between sulphur (S) and alumina to precipitate expansive phases but S comes from the environment (usually from the ground or underground water)

These processes have some common features:

- They all involve chemical reactions/processes that occur at the nanoscale

- They are very much influenced by the amount of water that is present in the pores: water conditions the transport properties (and then the rate at which the species are transported) and water is the reaction medium (chemical reactions can only occur in water). This stress the need of accurate descriptions for water transport and accurate descriptions of the effect of saturation on transport and chemical reactivity.

- In most cases transport is the step limiting the process (the degradation rate is imposed by transport); the description of the link between mineralogy, microstructure and transport is then of first importance.

- Similarly, the description of cracking induced by the considered process as well as the consequences on the transport properties are also of paramount importance.

- Kangni-Foli et al. (2021) "Carbonation of model cement pastes: the mineralogical origin of microstructural changes and shrinkage" Cem. Concr. Res. 144, 106446

R&D focusing on materials aspects (modelling, characterization, novel binders and mix designs)

- Need of approaches/models that describe the mechanisms at the nanoscale + Need for multiscale approaches/models to evaluate the consequences of the nanoscale mechanisms at the mesoscale (material properties)

- Use of machine learning (ML) to assess the durability properties of the materials based on their composition and/or propose the most suitable concrete composition for the considered degradation scenario (need for exhaustive compilations of experimental data)

R&D focusing on Non-destructive testing, monitoring, structural assessment

- Development of durability-oriented embedded instrumentation/sensors and NDT (...)

R&D focusing on structural modelling

- Need for multi-scale approaches/models to compute the structural response induced by the nanoscale mechanisms and/or the materials durability properties (accounting for the retroaction of the mechanical loading/response of the structure on the material properties and/or on the nanoscale mechanisms)

- Use of ML techniques for structural computations

Other observations

List of authors of the ID card

Stéphane POYET (CEA)

Concrete structures types	Importance level				
	Insignificant	Slight	Medium	High	
Containment with metallic liner	_	-	Х		
Containment without metallic liner			Х		
Cooling towers			Х		
Spent fuel pools			Х		
Water intake/outtake structures			Х		
Concrete pipe			Х		
radioactive waste package			Х		
Structural anchorages			Х		
Foundations, piles and			Х		
underground structures					
Pedestal of reactor vessel			Х		
Practical consequences for Long Ter	m Operation			I	
In some cases, concreting may be d	-	e and/or to	verify properly. F	resh concret	
flow may be hindered by the presen					
holes, honeycombs and other defe		-			
structure usability, performance an					
difficult to control because of th	•	• •			
liner/forms that prevent access to t		-	•		
good example of what should be req					
- Concrete formulation: flowable but		crete to fill a	II the volume betw	yeen the ster	
plates			in the volume betv	veen the ster	
- Because concrete cannot be obse	erved directly: n	eed of dura	hility-oriented in	strumentatio	
(concrete drying, temperature, carl	•		•		
monitoring					
- Models and specific approaches to	describe the loca	linteraction	hetween studs an	d concrete	
and suitable models for structural co		i interaction	between studs an	u concrete	
	inputation.				
References:					
- Burgan, B., Hoang Tung, V., Chryssanthopo					
efficiency (SCIENCE) : final report, Publicati					
R&D focusing on materials aspects (
 For novel binders - adapt mix design the fresh and hardened and suitable 			ultable concrete p	operties at	
the fresh and hardened and suitable	le properties				
- Need for scale-one mock-ups					
R&D focusing on Non-destructive te	-			••••	
- Development of embedded instrum		-	•	itoring	
(deformation, drying, cracking, carl			•	/!	
- Development of NDTs for defects lo	ocalization and/o	or structural l	nealth monitoring	(inputs for	
digital twin approaches)					
R&D focusing on structural modellin	-				
- Development of reliable & cost-effe	ective models/too	ols to describ	be the mechanical	behaviour of	
steel-concrete				·	
	ch tor Agoing Ma	nogement o	nd ontimization of	Long-Term	
- Development of digital twin approa	CITION Ageing Ma	anagement a		Long renn	
 Development of digital twin approa Operation Use of ML techniques for structural 		-	-		

5.6 Voids and defects in steel-concrete structures

-

Other observations

List of authors of the ID card

Stéphane POYET (CEA), Eric PHILIP (CEA)

5.7 Microbial activity

Concrete structures types		Import	ance level	
	Insignificant	Slight	Medium	High
Containment with metallic liner			Х	
Containment without metallic liner			Х	
Cooling towers			Х	
Spent fuel pools				
Water intake/outtake structures				
Concrete pipe			Х	
radioactive waste package				Х
Structural anchorages				
Foundations, piles and			Х	
underground structures				
Pedestal of reactor vessel				
Practical consequences for Long Ter	m Operation			

Microorganisms (e.g. bacteria, fungi) are present everywhere in the environment and it has been known for long that their activity can have a significant impact on cementitious (and metallic) materials and can induce bio-deterioration and threaten the durability of materials and potentially impair structural integrity. The most usual degradation pathway is the production of mineral or organic acids that alter/degrade the concrete components and, like concrete leaching, generate strength loss, porosity increase, shrinkage and cracking... In the same way, some bacteria are able to oxidize iron and other metals and lead to iron bio-deterioration. Alternatively, microbial activity is also known to affect the redox potential and then modify the speciation and mobility of radionuclides within concretes.

Microbial activity is almost always possible although it requires some conditions related to the micro-organisms themselves (synergy between different organisms within biofilms for instance), the materials (porosity, chemical composition, pH, etc.) and the environment (temperature, water and nutrient supply, etc.) to be met.

Alternatively, the ability of micro-organisms to produce substances that react with cementitious materials may be an advantage: the activity of bacteria may lead to the precipitation of calcium carbonate and thus seal porosity or cracks in curative or preventive approaches.

References:

- Turick & Berry (2016) "Review of concrete biodegradation in relation to nuclear waste" Journal of Environmental Radioactivity 151, 12-21
- Zhang et al. (2019) "Use of genetically modified bacteria to repair cracks in concrete" Materials 12, 3912

- Van Tittelboom et al. (2010) "Use of bacteria to repair cracks in concrete" Cement & Concrete Research 40, 157-166

R&D focusing on materials aspects (modelling, characterization, novel binders and mix designs)

- Alternative binders for increased resistance to bio-deterioration (including supplementary cementing materials, geopolymers, alkali-activated materials...)
- THCBM Thermo-Hydro-Chemo-Bio-Mechanics: understanding, description and modelling of the interaction(s) between heat and mass (including water) transport, chemical reactions, bacteria population growth and mechanics

R&D focusing on Non-destructive testing, monitoring, structural assessment

- Development of experimental setups that integrate the specify of the biological conditions (heterogeneous within the biofilms)
- Miniaturisation of sensors for monitoring the local chemical conditions (pH, redox for instance) and the local changes in chemical-physical properties.

R&D focusing on structural modelling

_

- Upscaling approaches (micro-macro) based on the description of the microbial activity (describing the population growth) and evaluation/description of the disorders at the structure/structural element scale

Other observations

List of authors of the ID card

Alexandra BERTRON (INSA Toulouse), Stéphane POYET (CEA)

5.8 Concrete in LOCA conditions

Concrete structures types		Import	ance level	
	Insignificant	Slight	Medium	High
Containment with metallic liner		Х		
Containment without metallic liner				Х
Cooling towers	X			
Spent fuel pools	X			
Water intake/outtake structures	X			
Concrete pipe	X			
radioactive waste package	X			
Structural anchorages	X			
Foundations, piles and	X			
underground structures				
Pedestal of reactor vessel				Х
Practical consequences for Long Ter	m Operation			•

Practical consequences for Long Term Operation In accidental conditions, concrete might have to cope with very unusual conditions In case of a

loss of the primary coolant (LOCA), the vaporization of water is expected to induce a significant increase in temperature, total pressure and relative humidity within the reactor containment building (approx. 150°C, 5-6 bar). These specific conditions are expected to induce water and heat transfer in the concrete wall and generate strains, stresses and possibly cracking. The description of these coupled phenomena remains difficult today due to the lack reliable and consolidated data (mainly concrete properties and associated mechanisms such as transient thermal strains or creep for instance) to feed models and numerical tools (that still remain to be improved and validated). In the absence of a metallic liner, the presence of cracks is expected to generate a pathway for fission products dissemination in the environment. However, water condensation within the cracks (due to temperature differences between hot vapour and temperate/cold concrete), crack tortuosity and constrictively are expected to promote the retention of RNs in the concrete (through physical and chemical processes) and then limit the dissemination.

In the event of a fuel meltdown (creation of corium), if the corium exits the reactor vessel, the concrete would come into contact with the liquid corium. In addition to the chemical interactions and associated degradation, the concrete would then be subjected to Thermo-Hydro- Mechanics loading which could generate cracking and promote the transport of liquid corium.

R&D focusing on materials aspects (modelling, characterization, novel binders and mix designs)

- Need of reliable and consolidated data and models to describe the materials properties and deformations in temperature (including cracking)
- Use of ML to assess the materials properties based on their composition and/or propose the most suitable concrete composition for the

R&D focusing on Non-destructive testing, monitoring, structural assessment

- Development of embedded instrumentation/sensors and NDT for cracking (detection, monitoring, quantification...
- Development of NDTs for cracks localization and/or structural health monitoring (inputs for digital twin approaches...)

R&D focusing on structural modelling

- Need for tests/mock-ups at meso/macro scales (from the centimetre to the structure)
- Use of machine learning techniques for structural computations (surrogate models...)

Other observations

List of authors of the ID card Stéphane POYET (CEA)

Concrete structures types		Import	ance level	
	Insignificant	Slight	Medium	High
Containment with metallic liner			Х	
Containment without metallic liner				Х
Cooling towers			Х	
Spent fuel pools	Х			
Water intake/outtake structures	Х			
Concrete pipe		Х		
radioactive waste package				Х
Structural anchorages				Х
Foundations, piles and			Х	
underground structures				
Pedestal of reactor vessel				Х
Practical consequences for Long Tor	m Onoration			

5.9 Seismic performance and consequence of impacts

Practical consequences for Long Term Operation

Traditionally, it is intended that NPP concrete structures respond in the range of small strains to design basis (DB) seismic loads. For impact loads, especially hard-missile impact, localised damage of the concrete is inevitable, but besides this local zone the structures are also assumed to respond in range of small strains. Hence, NPP structural studies have traditionally been focusing on the quasi-elastic ranges of responses of reinforced concrete elements.

Recently, there is a growing interest, partly triggered by the Fukushima accident, in design extension conditions (DEC), or beyond design basis events. The DEC earthquake scenarios defined by regulators are significantly more demanding compared to earlier DB scenarios. Fulfilling them requires exploiting more of the non-linear stress responses of material and components (e.g. shear walls). Computer modelling capabilities are also increasing significantly allowing for multiscale modelling, whereas information from micro scale models are utilized and integrated into larger scale models, including at structural scale. This sophistication, both in terms of geometry and material models, of modelling as tool for safety analysis for NPPs, creates opportunities, benefits, but also risks when implemented without appropriate calibration to empirical observations.

Another aspect that needs to be considered when LTO of concrete structures is under investigation is the effect of physical, chemical and seismic ageing on the mechanical properties of reinforced concrete. Recurrent small amplitude vibration combined with the corrosive effect of the environmental loads can result in a premature drop of concrete strength and stiffness properties. As a result, analyses done with linear-elastic material assumptions and virgin concrete material parameters may no longer be valid. Further theoretical investigations validated against benchmark experiments is necessary to assess the effect of concrete ageing on the mechanical behaviour of the structure.

References:

- Eibl (2003) "Airplane impact on nuclear power plants" SMIRT 17 proceedings, #J03-6
- Itoh et al. (2005) "Computer simulation of an F-4 Phantom crashing into a reinforced concrete wall" Computational Ballistics II 40, 207-217
- Saarenheimo, A., Tuomala, M., & Calonius, K. (2015). Shear punching studies on an impact loaded reinforced concrete slab. Nuclear Engineering and Design, 295, 730-746
- Kim et al. (2021) "Seismic performance assessment of NPP concrete containments considering recent ground motions in South Korea" Nuclear Engineering & Technology
- Fedoroff, A., Calonius, K., 2020. Using the Abaqus CDP model in impact simulations. Rakenteiden mekaniikka (Journal of Structural Mechanics), 53(3), 180-207. <u>https://doi.org/10.23998/rm.79723</u>

R&D focusing on materials aspects (modelling, characterization, novel binders and mix designs)

- Selection/development of multi-scale material modelling techniques for extended non-linear response ranges (i.e. cracking, damage etc.) of large-scale NPP specific concrete structures (e.g. shear walls); In particular, the topics of anisotropy of damaged concrete and the mechanisms of frictional dissipation in cracked concrete should be addressed.
- Collecting or developing material testing methods to supply multi-scale modelling with reliable input parameters at different scales. If novel binders, e.g. geopolymers or Alkali Activated Materials are considered, a thorough experimentally validated theoretical study of the mechanical properties has to be carried out.

References:

- Vilppo, J., Kouhia, R., Hartikainen, J., Kolari, K., Fedoroff, A., & Calonius, K. (2021). Anisotropic damage model for concrete and other quasi-brittle materials. International Journal of Solids and Structures, 225, [111048].
- Kumarappa, D.B., Peethamparan, S., 2020. Stress-strain characteristics and brittleness index of alkali-activated slag and class C fly ash mortars. J. Build. Eng. 32, 101595. https://doi.org/10.1016/j.jobe.2020.101595

R&D focusing on Non-destructive testing, monitoring, structural assessment

Sophisticated concrete material models are reliable only if properly calibrated. Therefore, novel experimental methods for concrete mechanical parameter testing need to be considered. An important development topic is the use of soundwave velocity speed using the pitch-catch method to determine the stiffness properties of damaged concrete.

References:

- Brown, R.J., 2001. Relationships between the velocities and the elastic constants of an anisotropic solid possessing orthorhombic symmetry, CREWES report.
- Scott P. Cheadle, R. James Brown, Don C. Lawton, 1991 Orthorhombic anisotropy: A physical model to study, Geophysics 56(10):1603-1613
- Calonius, K. Fedoroff, A. Forsström, A. Jessen-Juhler, O., (2021), Comparison of ultrasonic, imaging and mechanic measurements for concrete stiffness determination in cyclic compression tests. VTT research report (VTT-R-00962-21)

R&D focusing on structural modelling

- A hot topic in structural modelling and simulation of impact loaded structures is the modelling of fragmentation. Standard finite element formulation needs to be extended in order to materialize macroscopic crack growth and fragmentation, which is necessary to correctly model the multibody simulation beyond initial failure. Other related topics include the correct modelling of reinforcement to concrete bond slip as well as contact of pre-stress cables against ducts in the neighbourhood of an impact. It also has to be acknowledged that solutions used for quasi-static simulations may not be effective in high-speed dynamic simulations.

References:

- Fedoroff, A.;Calonius, K.;& Kuutti, J. (2019). Behavior of the abaqus CDP model in simple stress states. Rakenteiden Mekaniikka (Journal of Structural Mechanics), 52(2), 87-113.
- Kolari, K., 2017. A complete three-dimensional continuum model of wing-crack growth in granular brittle solids. Int. J. Solid Struct. 115–116, 27–42. https://doi.org/10.1016/j.ijsolstr.2017.02.012
- Kubilay, Ö, (2021). Finite Element Analysis of Prestressed Concrete Slabs Under Impact Loading. Master thesis (Aalto University)

Other observations

-

List of authors of the ID card

Stéphane POYET (CEA), Ludovic Fülöp (VTT), Alexis FEDEROFF (VTT)

5.10 Steel-concrete systems performance

		ance level	
Insignificant	Slight	Medium	High
			Х
	Х		
	Х		
			Х
		Х	
	Х		
			Х
			Х
		Х	
		Х	
	n Operation	X X	

Practical consequences for Long Term Operation

Steel-concrete (SC) is a structural typology and construction method in which continuous steel plates are used on the surfaces of concrete walls or slabs. The steel plates have the roles of both formwork and tensile reinforcement; they replace the longitudinal reinforcement. The continuous steel-plates on the sides of a construction element bring many benefits, achieving high levels of prefabrication and modularization leading to improved economy by shorter construction times; but it hinders the use of many traditional NDT techniques to assess the condition of concrete. SC elements are employed in the Westinghouse AP1000 plant design with units under construction, or entering operations, in China and the US. SC is also a potential answer for the needs, in terms of structural innovation, of SMRs. European standardization of SC design is ongoing in EN and AFCEN.

While the design solutions for future SC NPPs, are being worked out, there is need for lifetime performance estimation, efficient inspection solutions, monitoring techniques (especially NDT), and end-of-life scenario models.

References:

- T.L. Schulz, Westinghouse AP1000 advanced passive plant, Nucl. Eng. Des. 236 (2006) 1547–1557. https://doi.org/10.1016/j.nucengdes.2006.03.049
- ONR, Generic Design Assessment New Civil Reactor Build Step 4 Civil Engineering and External Hazards Assessment of the Westinghouse AP1000[®] Reactor, Office for Nuclear Regulation, 2011
- NRC, Final Safety Evaluation Report Related to Certification of the AP1000 Standard Plant Design, U.S. Nuclear Regulatory Commission, 2011.

R&D focusing on materials aspects (modelling, characterization, novel binders and mix designs) Develop modelling solutions for performance of SC in extreme loading conditions (especially cracking, delamination, post-linear response, etc.)

R&D focusing on Non-destructive testing, monitoring, structural assessment

- Development of standardization on specialized issue of performance (e.g. in-plane shear, high velocity missile impact, etc.)
- Selection and development of suitable NDT techniques for inspection and monitoring of CS structural systems.

References:

 J.P. Lareau, J. Iacovino, Inspection of a Composite Steel-Concrete Shield Building for the AP1000TM Nuclear Power Plant Construction, in: Proc. Eighth Int. Conf. NDE Relat. Struct. Integr. Nucl. Press. Compon., Publications Office of the European Union, Berlin, Germany, 2010. (doi.org/10.2790/31462)

evaluation of steel-concrete mock-ups, in: Proc. 10th Int. Conf. NDE Relat. Struct. Integr. Nucl. Press. Compon., Publications Office of the European Union, Cannes, France, 2013: pp. 469 969–975.

R&D focusing on structural modelling

Confirmatory modelling of large-scale CS structures, for model-to-measurements stress and strain distributions in connections.

Other observations

_

List of authors of the ID card

Stéphane POYET (CEA), Ludovic Fülöp (VTT)

edf

RØD

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK Institut kategorii A+, JRC collaboration partner

sck cen

CVŘ CHTrum výzkumu Řež

This project has received funding from the Euratom research and training programme 2019/2020 under grant agreement No. 899997