

INSTITUT DE CHIMIE SEPARATIVE DE MARCOULE

New insights in the description of the dissolution of actinide dioxides : better understanding for their reprocessing

cea

2020

N. DACHEUX

ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Bagnols sur Cèze, France

Transverse approach of the material elaboration

+ Dissolution of AnO₂, (An,Ln)O_{2-x} / Fluorite-type prepared by wet chemistry routes

- Conventional parameters (chemical composition, temperature, acidity, ...)
- Structural parameters (oxygen vacancies, superstructure, secondary phases, ...)
- Microstructural parameters (crystal defects, crystallite size, densification rate, ...)

1

PRECCI Report, CEA, 2001, CEA-R-5958E

Dissolution : a key step in the front-end of reprocessing

Dissolution : a key step in the front-end

of reprocessing

- Shearing of the fuel pens Zircaloy scabbard / irradiated UO₂
- > Dissolution
- Hot and Concentrated HNO₃
- Oxidation of U(IV) into U(VI)
- Uptake of scabbards pieces with the help of bucket-wheel
 - \Rightarrow Specific conditioning

Necessity to better discriminate and prioritize the reactions and parameters driving dissolution: chemistry, radiolysis, structure, homogeneity, microstructure, ...

Solution Solution Solution

Preparation of model samples : Powdered – Sintered Actinide bearing oxides

Preparation of U_{1-x}Th_xO₂ and U_{1-x}Ln_xO_{2-x/2}

Oxalate precipitation

Conversion

R. T. $H_2C_2O_4 : +50\%$

> Washing (H₂O – EtOH)

> > Drying

(90°C)

 $Th_{1-x}U_{x}(C_{2}O_{4})_{2} \cdot 2 H_{2}O (x = 0 - 1)$ $U_{1-x}Ln_{x}(C_{2}O_{4})_{2-x/2} \cdot n H_{2}O (x = 0.1 \& 0.2)$ $\Leftrightarrow 7\% Y - 13\% La - 26\% Ce - 12\% Pr - 42\% Nd$

500°C/4h

Air

then

 Ar/H_{2}

Quantitative precipitation for U and Th precipitation

Platelet grains ≈ 5 µm in size

	Expected	Obtained (Dissolution)	Recovery yield	V	0.07		00.0 (
	more ratio		(78)	Ŷ	0.07	0.06 ± 0.02	99.9 🗸
U	0.9	0.89 ± 0.04	99.3 🗸	La	0.13	0.14 ± 0.03	93.8 ✓
Ln(III)	0.1	0.11 ± 0.02		Ce	0.26	0.31 ± 0.05	92.9 ✓
Full dissolution			Pr	0.12	0.13 ± 0.08	98.7 ✓	
	ICP-AES			Nd	0.42	0.42 ± 0.04	95.6 ✓

N. DACHEUX, INSPYRE first summer school, Delft, May 13 – 17, 2019

6

Characterization by XRD

Complete solid solution for $Th_{1-x}U_xO_{2'}$ following the Vegard's law \triangleright

INSPYRE

N. DACHEUX, INSPYRE first summer school, Delft, May 13 – 17, 2019

GENIÔRS

Sintering of U_{1-x}Ln_xO_{2-x/2} samples

Heating treatment

UO,

ım

RT – 500 MPa

Characterization PXRD, BET, ESEM, Pycnometry

Densification rate: 93%

Average grain size: 11.8 µm

Preparation of PGM doped UO₂

N. DACHEUX, INSPYRE first summer school, Delft, May 13 – 17, 2019

GENIÈRS 9

Sintering of UO₂: PGM

Uniaxial pressing RT – 500 MPa

T. Cordara, J. Nucl. Mater., 2019, Submitted J. Noirot, Monographie CEA, 2009, 25-28

Chemical durability of the ceramics during dissolution processes

N. DACHEUX, INSPYRE first summer school, Delft, May 13 – 17, 2019

GENIÖRS 11

Characterization of solution, solid and interface

2 Study of the surface (sub-surface) of the material Identification of the dissolution mechanisms

Techniques for observations :

✓ Optical microscopy, SEM, ESEM, TEM, ...

Techniques for surface analysis :

- ✓ Grazing XRD, XRR, ...
- ✓ Spectroscopy (UV, IR, Raman, TRLIFS, ...)
- ✓ EPMA, EELS, X-EDS, ...
- ✓ XPS, EXAFS, XANES, ...
- ✤ <u>To determine</u>:
- ✓ Thickness of the altered layer
- ✓ Nature of the altered layer
- ✓ Characterization of neoformed phases

Analysis and quantification of elements released in solution

Elementary concentration determination :

- ✓ Dissolved species, colloidal species
- Analytical techniques : ICP-MS, ICP-AES, α or β scintillation, α or β spectroscopy

Species distribution (speciation) :

- ✓ Redox, complexation, acid-base reactions
- ✤ <u>Access to</u>:
- \checkmark Direct determination of C_{Mi}
- \checkmark Evaluation of weight loss : Δm_{mat}
- ✓ Saturation indexes

Normalization tools :

$$N_{L}(i) = \frac{\Delta m_{i}}{x_{i} \times S}$$
$$R_{L}(i) = \frac{d N_{L}(i)}{dt} = \frac{1}{x_{i} \times S} \times \frac{d}{dt} (\Delta m_{i})$$

Description of dissolution & saturation mechanisms

Schematic representation of ceramic dissolution

Macroscopic study

Multiparametric expression of the dissolution kinetics

Dissolution reactor Leachate Pellet Support Magnetic stirrer

 $\mathbf{E}_{\mathbf{A}}$

$$R_L = k_0 \times e^{-RT} \times (H_3O^+)^n \times g(I) \times (E_i)^{ni} \times f(\Delta_r G)$$

A.C. Lasaga, Kinetic Theory in the Earth Sciences, Princeton Univ. Press, 1998

Kinetics of materials (minerals) dissolution

D. Horlait et al., J. Mater. Chem. A, 2 (2014) 5193

- ✦ A.C. Lasaga : Geochemical approach
 - \Rightarrow Activated Complex Theory
 - ♦ Only chemical effects (solution)
 - ✤ Control more often by surface reactions
 - ♦ No microstructural effect (solid)

A.C. Lasaga et al., Rev. Mineral., 31 (1995) 23 A.C. Lasaga et al., J. Geophys. Res., 89 (1984) 4009

Impact of conventional parameters (acidity, temperature, ...) on the dissolution kinetics

General trend of UO₂ dissolution in nitric acid

INSPYRE Integrations Legendreg MOX For Listender Integrations Auguster Mox For Listender

N. DACHEUX, INSPYRE first summer school, Delft, May 13 – 17, 2019

GENIČRS 15

Impact of temperature on UO₂ dissolution

INSPYRE Investigations Supporting MOX Fuel Lizerining in LISMI Protocolet Mexicole

Dissolution of Th_{1-x}U_xO_2 solid solutions

icen

L. Claparede et al., J. Nucl. Mater., 2015, 457, 304-316

J. De Pablo et al., Geochim Cosmochim Acta, 1999, 63, 3097-3103

INSPYRE Instalates Supporting MOX Fue Denning Installite Supporting MOX Fue Denning Installite Supporting MoX Fue Denning

Impact of HNO₂ on dissolution

F. Tocino, PhD, ICSM/CEA, Univ. Montpellier, Dec. 2015 *T. Dalger,* PhD, ICSM/CEA, Univ. Montpellier, 2016–2019

T. Dalger et al., J. Nucl. Mater. 2018, 510, 109-122

Dissolution of $U_{1-x}Ln_xO_{2-x/2}$ **solid solutions**

D. Horlait et al., J. Mater. Chem. A, 2014, 2, 5193 – J. Nucl. Mater., 2012, 429, 237; S. Szenknect et al., J. Phys. Chem. C, 2012, 116, 12027

INSPYRE

Dissolution of U_{0.9}Ln_{0.1}O_{1.95} solid solution

Dissolution of UO₂ doped with PGM

Strong impact associated to the presence of PGM on R_{L,0}(U)

- ♦ Solid contribution @ the solid/liquid interface ?
- Solution contribution: reduction of HNO₃ by PGM then production of autocatalytic species in solution (e.g. HNO₂) ?

N. DACHEUX, INSPYRE first summer school, Delft, May 13 – 17, 2019

GENIČRS 24

INSPYRE Interpaties Supports MORTed Litering Interpretations Department

N. DACHEUX, INSPYRE first summer school, Delft, May 13 – 17, 2019

GENIČRS 25

Impact of microstructural parameters on the dissolution kinetics

Role of microstructural (hidden) parameters ?

Open question :

Is there any role of the microstructure on the material dissolution ?

Role of microstructural parameters

INSPYRE Intergrations Reporting MOX Flue Literations Interligibles Records

Microscopic study

Microstructural evolution of solid/solution interface

Operando study of evolving interface during dissolution

Operando study of Th_{1-x} U_xO_2 **dissolution**

90°C

П E

HNO₃-

2M

 ${
m Th_{0.5}U_{0.5}O_2}$

Evaluation of Specific Surface Area (SSA) : SESAM method

Evaluation of SSA: SESAM method

Monitoring of solid/liquid interface during dissolution by ESEM

Monitoring of solid/liquid interface during dissolution by ESEM

 $Th_{0.5}U_{0.5}O_{2} \text{ pellet}$ $2M \text{ HNO}_{3} - T = 90^{\circ}\text{C}$ Time intervals : 7 hours

Heterogeneous dissolution Preferential dissolution zones : GB, triple junctions, pores Formation of corrosion pits

Surface reactions controlling dissolution Correction of S rapidly required $\Delta m/m_0 = 3\% \Leftrightarrow S/S_0 \approx 20$

Monitoring of solid/liquid interface during dissolution by ESEM

Th_{0.25}U_{0.75}O₂ pellet / 4M HNO₃ – RT Time intervals : 1 hour

Homogenous dissolution Degradation of the entire interface

N. DACHEUX, INSPYRE first summer school, Delft, May 13 – 17, 2019

GENIČRS 34

Monitoring of solid/liquid interface during dissolution by ESEM

 UO_2 pellet 1 M HNO₃ – T = 60°C Dissolution time : 3.2 days

Homogeneous dissolution Microstructural evolution Oxidation of U(IV)

T. Cordara, PhD, ICSM/CEA, Univ. Montpellier, Nov 2017

 $U_{1.9}Ln_{0.1}O_{1.95}$ pellet 1 M HNO₃ – T = 60°C Dissolution time : 1.6 days

Preferential dissolution zones (GB) Ln(III) – enrichment in GB ✤ Decrease of energy of cohesion

> D. Horlait et al., J. Nucl. Mater., 2012, 429, 237 S. Szenknect et al., J. Phys. Chem. C 2012, 116, 12027

Impact of PGM : contribution at the solid/solution

interface

UO₂ pellet with 3 mol.% PGM 0.1 M HNO₃ – T = 60°C Dissolution time : 58 days

♦ PGM / UO₂ / Solution interface

Surface reactions controlling dissolution Impact of PGM @ Solid/Liquid interface

T. Cordara, PhD, ICSM/CEA, Univ. Montpellier, Nov 2017

3D analysis of the dissolution of UO₂ + PGM

Operando ESEM:

Sequence of stereoscopic images

Sintered UO₂ doped with 3 mol% Rh-Ru-Pd

0.1 M HNO₃ – 60°C

N. DACHEUX, INSPYRE first summer school, Delft, May 13 – 17, 2019

Tilts

10°

-10°

3D analysis of the dissolution of UO₂ + PGM

Impact of the heterogeneity on the dissolution

$Th_{0.5}U_{0.5}O_2 - 2M HNO_3 - T = 90^{\circ}C - Heterogeneous material$

Impact of heterogeneity

Main Conclusions & Overviews

Relative contribution of parameters during dissolution

***** Discrimination of the impact of PGM's on the global dissolution process

- ✤ Individual role of Ru, Rh, Pd (solubilized redox species)
- ✤ Impact of the presence of secondary phases (i.e. perovskite for Mo)
- Precise impact of nitrogen based species coming from reduction of HNO₃
 - ✤ Combined effect (increase of production by PGM's)
- Particular behavior of (U,Ce)O₂ solid solutions
 - ✤ Impact of the "sample history" on the speciation of U and Ce
 - ♦ Consequence of redox reactions U(IV)/Ce(IV), U(V)/Ce(IV) @ the interface
- Impact of structural parameters
 - ***** Effect of oriented MO₂ surface (single crystals) on the dissolution kinetics
 - Impact of dislocation loops at the interface
- Impact of porosity (confined volumes) on the development of reactions
- Impact of irradiation and irradiation/dissolution couplings

Thank you for listening.

Microstructural control : about the terminology ...

