

Thermodynamics of nuclear fuel

Case studies:

JOG and (U,Am)O₂ in Fast Neutron Reactors

E. Epifano^{1,4,5}

P. M. Martin¹, D. Manara², C. Guéneau³, A. L. Smith⁴

- 1. CEA, Nuclear Energy Division, DMRC/SFMA, 30207 Bagnols-sur-Cèze, France
- 2. European Commission, DG Joint Research Centre, Nuclear Safety & Security, P. 2340, 76125, Karlsruhe, Germany.
- 3. CEA, Nuclear Energy Division, DPC/SCCME, Universite Paris-Saclay, F-91191 Gif-sur-Yvette, France
- 4. Delft University of Technology, Applied Science, Reactor Physics and Nuclear Materials, Delft, The Netherlands
- 5. DMAS/LEM, ONERA & CNRS, Chatillon, France

Table of contents

Coupling experiments & CALPHAD thermodynamics modeling:

□ The CALPHAD method

□ Case study 1: the Joint-Oxyde-Gaine (JOG)

- Introduction on the JOG
- Experiments & calculations on the Cs-Mo-O system
- Experiments on the Cs-Mo-Te-O system

□ Case study 2: (U,Am)O₂

- Minor Actinide transmutations
- Experimental results on (U,Am)O₂ melting temperature
- CALPHAD modelling

□ Conclusions

The CALPHAD method

• The thermodynamic equilibrium at given conditions (P, T, x_i) is found by <u>minimization of</u> <u>the total Gibbs energy G</u>, which can be expressed as a linear combination of the G_m^{α} (Gibbs energy of the α phase):

$$G(T, P, x_i) = \sum_{\alpha} N^{\alpha} G_m^{\alpha}(T, P, x_i^{\alpha})$$

- The G^{α}_m functions are optimized by least square minimization method using experimental data

ONERA

Case study 1: the JOG

MOX fuel for FNRs

MOX fuel for SFR (Phenix)

What is the JOG?

Chemical composition of the JOG?

Chemical composition of the JOG

- Cs, Mo are the most abundant elements
- **Te**, **I**, Ba, Pd
- Oxide phase
- U, Pu only on the pellet side

JOG formation ↔ migration of volatile FPs from the inner pellet toward the colder periphery

Expected phases in the JOG

- Cs₂MoO₄
- **Cs₂UO₄** pellet side
- **Cs₂Te** (s) or (l)
- Csl (s), Csl(l) or Csl(g), Cs₂l₂(g)

The thermodynamics of the JOG system is not well known

T. N. PHAM THI, PhD Thesis, Aix-Marseille universite, 2014

Objective: complete thermodynamic description of the Cs-Mo-Te-I-U-Pu-O system

Cs-Mo-O and Cs-Te-O

TODAY

ONERA

Short literature review of the Cs-Mo-O system

- Several Cs-Mo oxides
- Cs₂MoO₄ is the main phase expected in the JOG
- A CALPHAD model available in the TAFID, but missing data for some compounds and need for validation

Recent experimental data on Cs₂Mo₂O₇: standard entropy

• CALPHAD model for a solid stoichiometric phase:

$$G_{m}(T) = \Delta_{f}H_{m}^{\circ}(298.15K) - S_{m}^{\circ}(298.15K) T + \int_{29}^{T} C_{p,m}(T) dT - T \int_{298}^{T} C_{p,m} dT$$

Heat capacity
Standard entropy
$$\sum_{p,m}^{298K} \frac{C_{p}}{T} dT \qquad \text{Heat capacity}$$
$$C_{p,m}(T) = a + bT + cT^{2} + dT^{-1} + eT^{3} + \dots$$

 S_m ° of $Cs_2Mo_2O_7$ was missing in the literature:

- C_{p,m}⁰(298.15 K) = 211.9 ± 2.1 J K⁻¹ mol⁻¹
- S_m⁰ = 317.4 ± 4.3 J K⁻¹ mol⁻¹

= 332 J K⁻¹ mol⁻¹ from CALPHAD calculations (TAFID)!

A. Smith et al., Journal of solid state chemistry 253, (2017), 89-102

Experimental results on Cs₂Mo₂O₇: enthalpy of melting

Short literature review of the Cs-Te-O system

- Tellurium generally observed as Cs₂Te in the JOG
- NO CALPHAD model available
- However, tellurites and tellurates exist:

	Structure	T range	∆ _f H⁰	S⁰
Cs ₂ TeO ₃	P321	≤810 ºC	•	х
Cs ₂ Te ₂ O ₅	Pbca	≤439 ºC	•	X
Cs ₂ Te ₄ O ₉	I-42d	≤ 549.5 ºC	•	X
Cs ₂ TeO ₄	Pnma		•	X
Cs ₂ Te ₄ O ₁₂	R-3m		X	X
→ Iso-structural with Cs ₂ MoO ₄				
Study of solubility				

ONERA

Experimental data on Cs₂(Mo,Te)O₄

• XRD pattern of a Cs₂MoO₄ + Cs₂TeO₄ mixture

Experimental data on Cs₂(Mo,Te)O₄

Experimental data on Cs₂(Mo,Te)O₄

Cs₂(Mo,Te)O₄ : implications for reactor

Melting Temperature

- T_m(Cs₂MoO₄) = 1220 ± 10 K
- $T_m(Cs_2MoO_4) = 1177 \pm 10 \text{ K}$
- Cs₂TeO₄ has a lower melting point
- Measurements on the solid solution on going

A. Volfi, Master thesis, Politecnico di Milano

Thermal expansion (HT-XRD)

Study of the compounds thermal expansion

- α_a = 36.3 10⁻⁶ K⁻¹
- α_b = 39.1 10⁻⁶ K⁻¹
- α_c = 32.8 10⁻⁶ K⁻¹

Conclusions on case study 1

- The JOG is characteristic of FNRs and it is formed because of the migration of volatile FPs due to high thermal gradients
- Need to have a thermodynamic description of the U-Pu-Cs-Mo-Te-O system → CALPHAD method
- Recent investigations on Cs-Mo-O
 - CALPHAD model existing
 - New experimental data: S° and ΔH_{m} of $Cs_{2}Mo_{2}O_{7}$
 - The two experiments are consistent one with the other
 - Need to update the existent CALPHAD model
- Recent investigations on Cs-Mo-Te-O
 - A Cs₂TeO₄ compound iso-structural with Cs₂MoO₄ exists
 - The existance of a $Cs_2(Mo, Te)O_4$ solid solution has been shown
 - The effects need to be investigated!

Case study 2: (U,Am)O₂ oxides

Why (U,Am)O₂?

- Spent fuel: long-term radiotoxicity due to
 Pu
 MAs, in particular ²⁴¹Am
- Pu \rightarrow already recovered to produce MOX
- Next step for a sustainable **nuclear fuel cycle**:

Partition & Transmutation of MAs

ONERA

(U,Am)O₂ are possible transmutation targets

Need to know the phase equilibria in the U-Am-O system

- Fabrication process
- Behavior in reactor

Investigate the thermodynamics of the U-Am-O system and develop a thermodynamic database

Introduction: the U-O and the Am-O systems

 $UO_{2+\delta}$ and $AmO_{2-\delta}$ have different thermodynamic properties \Leftrightarrow Oxygen/Metal (O/M) ratio (U,Am)O₂ solid solution?

Few data in the literature ٠

0.8

ONERA BALL BERGE THE WALLEY

Melting-T: experimental set-up and procedure

Melting-T: experimental results

Argon

Air

Melting-T: experimental results

Results

□ <u>Under argon</u>

 almost linear decrease of T_m with the Am/(Am+U) ratio

Under air

- Generally lower T_m than in Ar
- $T_m > T_m (UO_{2+x} \text{ in air})$
- No monotonic variation with Am/(Am+U) ratio
- Highest T_m for Am/(Am+U)=0.3 and 0.5
- For Am/(Am+U)=0.5, very similar value in Ar and in Air

(*) R. McHenry, Trans. Am. Nucl. Soc. 8, (1965) 75.

(**) D. Manara et al, J. Nucl. Mater. 342 (2005) 148-163 C. Guéneau et al., J. Nucl. Mater. 419 (2011) 145–167

ONERA

Final composition of the samples?

Post-melting characterization (at RT!!!)

Laser heating advantages:

□ Short measurement duration

Post-melting characterization: XAS

CALPHAD thermodynamic modeling

To model the melting behaviour, we need:

- GAS phase → no ternary molecular species → extrapolation from the binaries
- The (U,Am)O₂ → 3-sublattice model*

 $P = \sum_{j} v_j y_{A_j} + Q_{y_{V_a}}$

 $Q = \sum_{i} v_i y_{C_i}$

 $(Am^{3+}, Am^{4+}, U^{3+}, U^{4+}, U^{5+})$ $(O^{2-}, Va)_2$ (O^{2-}, Va)

$$G = \sum_{I} P_{I}(Y) \cdot G_{I}^{0} + G_{mix}^{ideal} + G_{mix}^{xs}$$

The LIQUID → partially ionic 2-sublattice liquid model

 $(Am^{+3}, U^{+4})_P (O^{-2}, Va^{-Q}, O, AmO_2)_Q$

- Optimized fitting the melting-T
- Gas-Solid-Liquid equilibrium calculated (not imposed composition of the phases!):

Ex: n(Am)=0.5, n(U)+n(Am)=1, n(O)=2, n(Ar)=5, P=0.30 MPa 2700-

Close reproduction of complex experiments!

* E. Epifano, « Study of the U-Am-O system », PhD thesis,Paris 2017

CALPHAD computations

Is the final composition representative of the solidus or there is a further variation during the cooling?

Calculated solidification paths

- The total composition of the system was fixed (and the total P)
- The composition of the phases was let to vary:

Case study 2 : Conclusions

- (U,Am)O₂ are possible transmutation targets
- T_m measurements by laser-heating + post-melting characterizations
 - T_m decreases when O/M>2
 - T_m decrease with the Am content, in reducing conditions
 - The Am doping improves the resistance toward the oxidation
- The new experimental data were used for the CALPHAD modeling of the liquid phase of the U-Am-O system
- The CALPHAD method allows simulating and better understanding complex experiments

Thanks to

- The LCC team of CEA/ Marcoule
- All the people at the JRC-Karlsruhe
- The INE beamline of ANKA
- The SETAM project for financial support of the PhD project
- The GENTLE project (Grant agreement no: 323304) for founding the internship at the JRC-Karlsruhe
- The INSPYRE project

...And thank you for the attention

