DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Case study SFR fuels : O/M ratio

16 May, 2019

Delft – The Netherlands

Fuels for Na fast reactors – O/M ratio

• Oxygen/Metal ratio : key specified parameter for the nuclear fuel behaviour under irradiation

Duriez et al., JNM, 277, 2000, 143-158

Reproduction and distribution are forbidden without prior agreement from the author

INSPYRE School | May 2019

Sample manufacturing

Sample manufacturing

- Manufacturing of U_{0.55}Pu_{0.45}O₂ pellets by powder metallurgy [1]
 - Objective #1 : homogeneous U-Pu distribution

EPMA X-ray mapping in gray levels of Pu and U in $U_{0.55}Pu_{0.45}O_2$ [2]

• Objective #2 : dense pellets with big grains for diffusion study

P _{apparent}	Grain size
(%ρ _{theo})	(μm)
95.6(3)	30-40

[1] Vauchy et al. Ceram. Int., 40(7B), 2014, 10991-10999
[2] Vauchy et al. JNM, 456, 2015, 115-119

Reproduction and distribution are forbidden without prior agreement from the author

INSPYRE School | May 2019

PAGE 4

Optimized ceramic processing

Optimization of a powder metallurgy process ^[1]

2013/07/24 HL D3,5 x3,0k 30 um SEM on raw PuO₂ powder ^[2]

^[1] Vauchy et al., Ceram. Int. 40, 2014, 10991-10999 ^[2] Berzati, PhD thesis, 2013

Reproduction and distribution are forbidden without prior agreement from the author

INSPYRE School | May 2019

| PAGE 5

High-temperature X-ray diffraction

DE LA RECHERCHE À L'INDUSTRI

Principle of X-ray diffraction

Reproduction and distribution are forbidden without prior agreement from the author

INSPYRE School | May 2019

- X-ray diffraction (XRD) of crystal structure
 - > Monitoring the scattered intensity of an X-ray beam illuminating a sample (the electrons of the atoms it contains because λ of X-rays similar to interreticular distances) as a function of incident and scattered angle, wavelength, *etc*.

- 6 Pu contents : 14 to 62% Pu
- Initially stoichiometric samples (**O/M ratio = 2.00**)

In situ reduction experiments under He + 5% H₂

DE LA RECHERCHE À L'INDUSTR

In situ observation of phase separation

DE LA RECHERCHE À L'INDUSTR

Rietveld + CALPHAD

DE LA RECHERCHE À L'INDUSTRI

Cea

How to read the data : iso-intensity map

XRD iso-intensity maps

Belin et al. JNM 465, 2015, 407-417

Reproduction and distribution are forbidden without prior agreement from the author

PAGE 13

DE LA RECHERCHE À L'INDUSTR

Lattice parameters and phase fractions

Belin et al. JNM 465, 2015, 407-417

Temperature of demixtion

Evaluation of the O/M ratio ?

Reproduction and distribution are forbidden without prior agreement from the author

INSPYRE School | May 2019

PAGE 15

O/M determination : biphasic domain

• Biphasic domain : Rietveld refinement + CALPHAD

O/M ratio at each temperature

O/M determination : single phase domain

• Single phase domain → comparison with literature

$$\frac{O}{M} = 21,3075 + 22,78 * 10^{-5} * T - 3,565 * a$$

O/M ratio at each temperature

Belin et al. JNM 465, 2015, 407-417

DE LA RECHERCHE À L'INDUSTRI

To be or not to be at equilibrium ?

Effect of cooling rate on demixtion

U_{0.55}Pu_{0.45}O_{2-x}, He + 5% H₂ + 20 vpm H₂O, various cooling/heating rates (from 0.05 to 4 K.s⁻¹)

Lattice parameters and T_{demixtion/recombination} identical regardless of cooling/heating rates !!!

Vauchy et al. JECS 34, 2014, 2543-2551

Reproduction and distribution are forbidden without prior agreement from the author

T_{demixtion/recombination}

= 770 ± 20 K

Effect of cooling rate on demixtion

- Elaboration of dense, stoichiometric (x=0) U_{0.55}Pu_{0.45}O_{2-x} samples [1]
- Room-temperature XRD on U_{0.55}Pu_{0.45}O_{2-x} samples cooled from 1773 K from 0.08 K.s⁻¹ to 300 K.s⁻¹ under dry (~20 vpm H₂O) Ar(He) + 5% H₂ [2]

 ^[1] Vauchy et al. Ceram. Int. 40, 2014, 10991-10999
^[2] Vauchy et al. JECS 34, 2014, 2543-2551 Reproduction and distribution are forbidden without prior agreement from the author DE LA RECHERCHE À L'INDUSTR

Extremely slow cooling rate

Cooling rate (O/M ratio) & microstructure

DE LA RECHERCHE À L'INDUSTR

Cez

Microstructural effects of demixtion - U_{0.55}Pu_{0.45}O_{2-x}

DE LA RECHERCHE À L'INDUSTR

Cez

Microstructural effects of demixtion - U_{0.55}Pu_{0.45}O_{2-x}

Microstructural effects of demixtion - U_{0.55}Pu_{0.45}O_{2-x}

Room-temperature oxidation

DE LA RECHERCHE À L'INDUSTR

Variation at the pellet scale (TGA)^[1]

Glove box atmosphere : N_2 + ~30 vpm O_2 + ~50 vpm H_2O

Storge duration	O/M ratio of U _{0.55} Pu _{0.45} O _{2-x} mesured by TGA	
t_o	1.927(1)	
t_0 + 3 months	1.938(1)	
t_0 + 9 months	1.976(1)	

Significative oxidation at the pellet scale in N₂

^[1] Vauchy et al., JNM 465 (2015), 349-357

Variation at the grain scale (XAS)^[1]

Glove box atmosphere : N_2 + ~30 vpm O_2 + ~50 vpm H_2O

Powders (grains 30-40 μm)

 \circ X rays penetrate tens of μ m in U_{1-y}Pu_yO₂

Sample	%UO ₂	%U₄O ₉	%PuO ₂	Calc. O/M ratio
U _{0.55} Pu _{0.45} O _{2-x}	96(2)	4(2)	100	2.01(1)
$U_{0.55}Pu_{0.45}O_{2.000}$	94(2)	6(2)	100	2.01(1)

Complete oxidation at grain scale (30-40 µm) in meantime between preparation and analysis (3 months)

^[1] Vauchy et al., JNM 465 (2015), 349-357

Variation of the O/M ratio at room temperature

Variation at the scale of the surface of grains (XRD)^[1]

Glove box atmosphere : N_2 + ~30 vpm O_2 + ~50 vpm H_2O

DE LA RECHERCHE À L'INDUSTI

Reconstituted air : N_2 + 21% O_2 + ~5 vpm H_2O

Similar trend than in glove-box atmosphere

Reproduction and distribution are forbidden without prior agreement from the author

INSPYRE School | May 2019

PAGE 31

DE LA RECHERCHE À L'INDUSTR

Variation of the O/M ratio at room temperature

Conclusions

O/M ratio of $U_{1-y}Pu_yO_{2-x}$ fuel depends upon :

- U and Pu composition
- Impurities (ex. Am)
- Sintering conditions (dwell temperature, dwell time, atmosphere)
- Cooling rate
- Storage conditions (temperature, atmsophere, time)
- Could be influenced by isotopic composition (ex. [²³⁸Pu])

Control of the OM ratio of U_{1-y}Pu_yO_{2-x} fuel during both manufacturing and storage is challenging

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Marcoule | 30207 Bagnols-sur-Cèze T. +33 (0)4.66.79.53.54 Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019 Nuclear Energy Division Research Department on Mining and Fuel Recycling Processes Department of Process Engineering of Actinide Materials Manufacturing

DE LA RECHERCHE À L'INDUSTRI

UO₂-PuO₂-Pu₂O₃ at room temperature

Reproduction and distribution are forbidden without prior agreement from the author

INSPYRE School | May 2019

PAGE 37

Experiment vs. Modeling

- Generally : experiment and modeling in good agreement
- Same low Pu content limit for the miscibility gap (~17% Pu)
- Some differences :
 - > Biphasic domain $MO_{2-x} + M_2O_3$ not modeled
 - > Existence of a three-phases domain $2 \times MO_{2-x} + M_2O_3$

Calculated composition range far from the hatched area of Sari

DE LA RECHERCHE À L'INDUSTRI

High Pu content : microstructures & O/M ratios

DE LA RECHERCHE À L'INDUSTRI

High Pu content : microstructures & O/M ratios

UO_2 -Pu O_2 -Pu $_2O_3$ at HT

ement from the author

UO₂-PuO₂-Pu₂O₃ at HT

Experimental temperatures of phase separation (DTA, HT-XRD)

 \rightarrow Entering in the miscibility gap

- T increases with Pu content
- Low Pu : only DTA results → scattering confirms the difficulties in measuring at low Pu content
- High Pu : T obtained with DTA lower than with HT-XRD
- PuO₂ : HT-XRD value (1000 K) in agreement with description of Pu-O

Very few experimental results

Experiment vs. Modeling

O/M ratio

Markin & Street. Journal of Inorganical Nuclear Chemistry 29 (1967) 2265-2280

Guéneau et al. Journal of Nuclear Materials 419 (2011) 145-167

- Experiment and calculations agree for $y \le 0.40$
- Difference for y > 0.40 : calculations overestimate T_{separation}

New HT studies are required to better describe the phase separation phenomenon

Reproduction and distribution are forbidden without prior agreement from the author

INSPYRE School | May 2019

PAGE 43

Conclusions

Conclusions

- Main specifications :
 - \checkmark Pu content > 20 % (about 30%)
 - \checkmark 1.94 < O/M ratio < 2.00
 - ✓ Dense pellets (95% Dth)
- Fabrication by powder metallurgy :
 - \checkmark Direct co-milling of UO₂ + PuO₂
 - \checkmark Sintering : key step \rightarrow densification + formation of solid solution + control of O/M ratio

Challenging because of high Pu content and O/M specifications

At high Pu content : **possible demixtion** (phase separation) during cooling step (sintering)

The higher the Pu content, the more difficult the control of O/M ratio

Thursday 16/05 16h00-16h30 \rightarrow case studies: mixed oxide fuels in fast reactors