

Separate effect studies

Marie-France BARTHE CEMHTI/CNRS, Orléans France marie-france.barthe@cnrs-orleans.fr

Coolant: water, He

- Fuel : with U (UO₂, **UC**)
- Cladding : metals , ceramics
- Structure, Vessels : Metals, *ceramics*

Extreme Conditions for materials: irradiation, temperatures...

Evolution of the *chemical* composition and of the *microstructure* (defects ..)

Evolution of macroscopic properties ? Thermal, mechanical

Improvement of current reactors :

increase lifetime, safety and fuel efficiency

Development of new generation

Burn MA (wastes), safety,

Génération IV VHTR, **GFR** (RNR-G.), **SFR** (RNR-Na), MSR (RSF)

T°C :500-800°C, fast neutrons

New conditions : irradiation and temperature

Find or develop new materials or optimisation of the used ones

Knowledge of the behaviour of materials under irradiation to foresee their evolution and lifetime in new conditions

CEA, ITU, NRG, PSI...

Facilities Not always exist
Long term experiments
(preparation, irradiation, decay ..)
Hot cells for PIE
Difficult to investigate

Mixed effects

HFR, BR2, OSIRIS...

MTR, Tests in conditions *close* to the reactor ones + PIE (Post Irradiation Examinations)

Knowledge of the behaviour of materials under irradiation to foresee their evolution and lifetime

- ✓ Gas
 - ✓ Solubility

✓ Diffusion :intrinsic and defect induced..
 ✓ Trapping, and precipitation, formation of bubbles : role of defects induced by irradiation

- ✓ Migration of bubbles
- ✓ Grain Boundaries effect
- ✓ Re-solution: role of irradiation
- \checkmark Thermodynamics and mechanical

✓ Defects

✓ Introduction of defects (E_d , E_f , E_m , binding, recombination,

✓ Evolution with temperature and dose

Multi parameters phenomena

General approach

Multiscale modelling

cm 1

Simulated Grain Structure in Irradiated

DOE, EXASCALE Initiative

From Toshimasa Yoshiie, Research Reactor Institute, Kyoto University

General approach

- 1. MTR and PIE (R. Hania-NRJ and J. Noirot-CEA)
- 2. Separate effect studies
 - a. Experimental approach
 - b. External irradiations
 - a. How to choose the irradiation conditions
 - b. The facilities
 - c. Fine characterizations
 - d. Illustrations in fuel and other materials

Irradiations in reactors :

Different radiations : neutrons, α , β , γ , FP (gas and)

FP: 70% solids (Ru, Mo, Zr, Nd...) 30% gases (Xe, Kr) or volatiles (Cs, I...) with energy 70 – 90 MeV

damage :

- point defects : vacancies, interstitiels
- extended defects : dislocations, cavities, bubbles
- Tracks, polygonisation

Impurities : Nd, Sr, Zr, Mo ... He, Xe, Kr, Cs, I : Gas bubbles

neutron

[1] T. Wiss et al, [2] A Michel et al, [3] T. S. Noggle, and J. O. Stiegler, JAP 31, 2199 (1960); [4] Hj. Matzke et al. / NIM B 166±167 (2000) 920±92

Separate effects approach

- Material : Model
- UO₂ polycristalline or single crystals
- Grain size, porosity (or density)
- Stoechiometry, Impurity level,

- 60 μm
- Preparation : polishing, post annealing (ArH₂)

• Separately

For He

- Only impurities
 - Infusion : For He
 - at high pressure (50-200MPa), high temperature(1473-1743 K), low concentration (≈320ppm), (Heidi [1], JRC)
- Only defects
 - Stoechiometry
 - Irradiations
 - electrons (0.5 3 MeV)
 - high energy ions (10 MeV 1GeV
- Together
 - Implantations (impurity = low energy ions 10 keV-MeV)
 - Alpha Doping : ^{233}U , ^{238}Pu (decay \longrightarrow 5 MeV alpha particles) (Mox, Pu, stoechiometry effects ?)
 - Neutrons (more complex, radioactivity..) MTR (not separate effects)

[1] E. Maugeri, T. Wiss, J.P. Hiernaut, K. Desai, C. Thiriet, V.V. Rondinella, et al. J Nucl Mater, 385 (2009), pp. 461-466

- Separately
 - Only impurities
 - Infusion : For He
 - at high pressure (50-200MPa) , high temperature(1473-1743 K) , low concentration (≈320ppm), (Heidi [1], JRC)
 - Only defects
 - Stoechiometry
 - Irradiations
 - electrons (0.5 3 MeV)– Van de Graaff
 - high energy ions (10 MeV 1GeV) –Cyclotron, Tandem
- Together
 - Implantations (impurity = low energy ions 10 keV-MeV) implantors, Van de Graaff
 - Alpha Doping : 233 U, 238 Pu (decay \longrightarrow 5 MeV alpha particles) (Mox)
 - Neutrons (more complex, radioactivity..) MTR (not separate effects)

Take into account the temperature (recombinations, binding....)

- 1. MTR and PIE (R. Hania-NRJ and J. Noirot-CEA)
- 2. Separate effects studies
 - a. Experimental approach
 - b. External irradiations
 - a. How to choose the irradiation conditions
 - b. The facilities
 - c. Fine characterizations
 - d. Illustrations in fuel and other materials

-PKA : Primary Knocked atom

-Range : depth at which ions stop -PKA : Primary Knocked atom

Elastic Collision (E<10 keV/uma)	S _n =-(dE/dx) _n	n : nuclear
Inelastic Collision (E>1MeV/uma)	$S_e = -(dE/dx)_e$	e : electronic

```
Stopping Power -dE/dx = (-dE/dx)_n + (-dE/dx)_e
```

-Range : depth at which ions stop -PKA : Primary Knocked atom

Stopping Power

- electronic (ionisation)

Energy released to electrons

- nuclear (collisions) Energy released to nucleus

SRIM: *The Stopping and range of ions in Matter*, by J. F. Ziegler, J. P. Biersack and M. D. Ziegler, available from *www.SRIM.org* (2013)

Monte-Carlo : the path and interaction of ion through a matrix made of independant atoms without considering their cristallographic arrangement, where each collision is processed as individual .

He in UO₂

JPNM

MF Barthe, INSPYRE School 1, Delft NL 13-17/05/2019

SRIM

PKA energy distribution

very close energy distribution of pka for Xe 800 keV and Au 4 MeV

In the first 100 nm

- same dpa level, and very close distribution of pka energy
- \succ but no Xe in Au irradiated UO₂

Study the evolution of defects in Xe implanted

- Without Xe Au 4 MeV irradiation

• SRIM: *The Stopping and range of ions in Matter*, by J. F. Ziegler, J. P. Biersack and M. D. Ziegler, available from *www.SRIM.org* (2013)

Monte-Carlo : the path and interaction of ion through a matrix made of independant atoms without considering their cristallographic arrangement, where each collision is processed as individual .

[1] SRIM - The Stopping and Range of Ions in Matter, freeware, http://www.srim.org/

Cemht

Implantations/ irradiations:

Main parameters to choose irradiation conditions

- Stopping power Se, Sn
- PKA (Primary Knocked Atom) energy : Mainly from FP with about 100 MeV PKA several hundred keV
- Range (related to energy for a type of ion, to be chosen in regard with the Characterization technique (sensitivity, probed depth ...)
- Fluence (concentration, dpa, cascade overlapping)
- Flux
- Impurity /dpa (dual or triple beam)
- Nuclear colisions/electronic
- Controled temperature ???

[1] J.Soullard, J.Nucl. Mater **135** (1985) 190-196.; [2] C. Meis, J. .Nucl. Mater **341** (2005) 25-30.

MD simulations in UO₂

 PKA (Primary Knocked Atom) energy : Mainly from FP with about 100 MeV PKA several hundred keV

Fig. 3. Size of the biggest vacancy clusters and interstitial clusters formed after the simulation of a displacement cascade in UO_2 .

MD simulations of a displacement cascade initiated at 100 keV at 700 K.[3]

Fig. 5. Total number of defects as a function of the cascade energy from MD simulations in iron [2], and in UO_2 compared with the NRT law [14].

Effect of fluence and cascade overlapping

Fig. 2. CMD-simulated size distribution of vacancy clusters after N = 1 and N = 36 successive cascades of 10 keV (here O and U point defects are considered separately). (Fig. 6 from [21]).

[3] G. Martin et al. /NIMB 269 (2011) 1727–1730; S. Maillard et al. / NIM B 374 (2016) 58–66

MD simulations in UO₂

successive cascades of 10 keV (here O and U point defects are considered

separately). (Fig. 6 from [21]).

 PKA (Primary Knocked Atom) energy : Mainly from FP with about 100 MeV PKA several hundred keV

[3] G. Martin et al. /NIMB 269 (2011) 1727–1730; S. Maillard et al. / NIM B 374 (2016) 58–66

Implantation/irradiation

From SRIM Calculations

Fluence: 1x10¹⁶ ³He.cm⁻²

When E_i increases , Rp increases, [He]_{max}, dpa_{max}, decrease

	Rp	At Rp		Track region		Stopping powers			
	(μm)	[He] Max (%at)	Dpa max	[He] %at/dpa	[He] Max (%at)	Dpa mean	[He] at/dpa (x10 ⁻²)	Se (keV/µm)	Sn (keV/μm)
50 keV	0.2	6.25	0.4	1.61				175	7
1 MeV	1.8	0.35	0.2	1.56	0.0014	0.014	0.1	608	0.9
45 MeV	347	0. 015	0.03	0.54	0	0.0009	0	78	4x10 ⁻²

For 1 MeV 2 zones

- ≈ only Defects
- Defects + He introduction
- High Se

To change the ratio He/dpa Use of double beam (JANNUS)

European irradiation platforms

https://www.ionbeamcenters.eu/ion-beam-facilities/

EMIR french national network

- CEMHTI Orléans (UPR CNRS/INC, Université d'Orléans)
- CIMAP Caen (UMR CEA/DSM, CNRS/INP, ENSICAEN, Université de Caen)
- CSNSM Orsay (UMR CNRS/IN2P3, Université Paris-Sud)
- LSI Palaiseau (UMR CEA/DSM, CNRS/INP, Ecole Polytechnique)
- SRMP Saclay (CEA/DEN/DMN)
- SRMA Saclay (CEA/DEN/DMN)

Supported by

- CNRS
 INP INC IN2P3
- CEA
 - DEN
- Ecole Polytechnique
- Université de Caen

http://emir.in2p3.fr/

EMIR Platforms

ions	
------	--

JANNuS – Saclay – SRMP

triple beams

irradiation and implantations simultaneously *in situ* RAMAN and RBS, NRA, ERDA

JANNuS – Orsay – CSNSM

Double beam, energy range

In situ TEM and RBS

CEMHTI

Middle and high-energy light ions

large range

In situ RBS, NRA and variable temperature, *in situ* Raman, *in situ* mechanical stress

CIMAP – GANIL

swift heavy ions (very high energy)

large range, effects dominated by electronic excitations

In situ X-ray diffraction, infrared, UV-visible spectroscopies, gas emission

electrons

SIRIUS – LSI

large irradiated area

energy range

In situ : electric, magnetic,

optic properties

HVEM – SMRA

In situ imaging of structural evolution

EMIR Platforms

evolution

Big advantage : *in situ* characterization with the strong effort on their development

CIMAP – GANIL

swift heavy ions

large range

effects dominated by electronic excitations

In situ X-ray diffraction, infrared, UV-visible spectroscopies, gas emission

EMIR Platform

Cyclotron

<u>GANIL</u>, Caen, France Heavy ions :C-U O.3 – 95 MeV/A 0.1 – 20 μA,

<u>CEMHTI-cyclotron</u>, Orléans, France

- Light ions : H⁺, D⁺, ³He, α
- Energies = 10 45 MeV

 3×10^{6} at.cm⁻².s⁻¹ < flux < 4×10^{12} at.cm⁻².s⁻¹

 5×10^8 at cm⁻² < fluence < 5×10^{16} at cm⁻²

under stress (in-beam creep with PSI)

• Temperatures -120° to 1200°C

•Neutrons flux $\Rightarrow 10^{12}$ neutron/cm²/s

In-beam creep device (PSI)

20-1200°C irradiati in-situ μRaman

Van de Graaff : VDG

Robert J. Van de Graaff (1901-1967)

– <u>Van de Graaff</u> (Pelletron) in CEMHTI

(light ions $: H^+, D^+, {}^{3}He, \alpha)$

• Energies = 0.5 - 3 MeV

 $10^9 \text{ at.cm}^{-2}.\text{s}^{-1} < \text{flux} < 2 \times 10^{12} \text{ at.cm}^{-2}.\text{s}^{-1}$

 5×10^{11} at.cm⁻² <fluence < 2×10^{17} at.cm⁻²

• Temperatures -130°C to 1200°C

Ion beam Analysis (NRA, RBS, PIXE)

Experimental devices (DIADDHEM on the front)

for heavy ions ARAMIS, (CSNSM) JANNUS (CEA Saclay), HZDR...with higher energy depending on charge/mass ratio.

- 1. MTR and PIE (R. Hania-NRJ and J. Noirot-CEA)
- 2. Separate effect studies
 - a. Experimental approach
 - b. External irradiations
 - a. How to choose the irradiation conditions
 - b. The facilities
 - c. Fine characterizations
 - d. Illustrations in fuel and other materials

Defects / damage

Characte techniqu	rization les	Basic phenomena	Type of defects	Modeling	Probing scale	ln fuel
ESR	Electron spin resonance	Transition between two electron spin states (Zeeman)	spin≠ 0, Point defects		Atomic/global (mm)	
PL	Photolumines -cence	Light absorption and emission	Point defects		Atomic/global (μm²- mm² x μm)	
PAS	Positron annihilation spectroscopy	Positron trapping and annihilation with electrons	Mainly Vacancy defects (single to clusters)	2comp. DFT [1]	Atomic/global (mm ³ as a function of depth)	[1, 2,3]
TEM	Transmission electron micoscopy	Diffraction of electron	Clusters (cavities/bubbles, loops, dislocation lines)		nm/local (0.05 µm³)	[5]
Raman	Raman diffusion	Diffused light analysis due to vibrational modes	Phase, specific symetry due to cristal. arrangement		Global (μm²-mm² x μm)	[3]
RBS/C	Channeling Rutherford Bacscattering	In single crystal , ion interaction with matter	Disorder (interstitials)	Mc Chasy []	Depth on µmxmm ²	[6]

••••••••••••• Non exhaustive list

[1] J. Wiktor et al Phys. Rev. B **90**, 184101 (2014); [2] D. Roudil et al. JNM 420 (2012) 63–68; [3] R. Mohun et al Acta Materialia 164 (2019) 512-519; [4] C. Onofri et al. / JNM 482 (2016) 105-113; [2] JNM 494 (2017) 252-259; [6] F. Garrido et al. NIM B 266 (2008) 2842–2847

Chemical inventory

Characterization techniques		Basic phenomena	advantages	Probing scale	In fuel ?
АРТ	Atom probe tomography	Mass recording of detached (HV or Laser) ions from pin	Precipitates, segregation	Atomic/local (0.05 μm ³)	
SIMS	Secondary ion Mass spectrometry	Mass recording of sputtered ions	Depth profiling	global (μm²-mm² x μm, as a function of depth)	[2]
EPMA	Electron probe micro analysis	Electron XR emission Wavelength Dispersive Spectroscopy	μbeam, quantitative and high sensitivity for elt >Li	Mapping (µm scale)	Gas, volatile [3]
TEM/ EELS, EDS	TEM/ energy loss spectroscopy, energy dispersive spect.	Electron energy losses, XR emission with electrons	Precipitates (chem comp. and crist. phase), segregation,	nm/local (0.05 µm³)	[4,5]
XAS, EXAFS, XANES	XR absorption spectroscopy	XR absorption (synchrotrons)	Local environment of one type of elt	Atomic/Global (mm ³)	[6]
NRA and RBS (/C)	Nuclear reaction analysis and Rutherford Bacscattering (Channeling)	ion interaction with matter (In single crystal)	Depth profile, (localization in the cristal)	Depth on µmxmm ²	[7]

•••••••• Non exhaustive list

[1] L.F. He et al. / JNM 456 (2015) 125–132;
 [2] L. Desgranges et al, NIM B 215 (2004) 545–551;
 [3] C. T. Walker et al, JNM 138 (1986) 155-161;
 [4] L. He et al Microsc. Microanal. 21 (Suppl 3), 2015;
 [5] A. Espriu-Gascon et al Int. J. Nanotechnol., 13, Nos. 8/9, 2016 627;
 [6] P.M. Martin et al. JNM 466 (2015) 379;
 [7] T. Belhabib et al. JNM 467 (2015) 1-8

- 1. MTR and PIE (R. Hania-NRJ and J. Noirot-CEA)
- 2. Separate effect studies
 - a. Experimental approach
 - b. External irradiations
 - a. How to choose the irradiation conditions
 - b. The facilities
 - c. Fine characterizations
 - d. Illustrations in fuel and other materials

SRIM and other codes/ Experimental data comparison

800 keV ³He irradiated W

Object Kinetic Monte Carlo: LAKIMOCA, C.Domain (EDF)

Parameterised with ab initio calculations for E_m and E_b , [3]

- The He and the defects can diffuse or emit (thermally activated events)
- \rightarrow Arrhenius law, Γ = f_v× e^(-E/KT)
- Residence time algorithm, $\Delta t = \Sigma_i \Gamma_i$
- Reactions submitted to distance criteria $d_{ij} < R_i + R_j$

[1] PE Lhuillier Thesis CEMHTI 2010, [2] A. De Backer et al. JNM 429 (2012) 78–91; [3] C.Becquart, et al JNM 403, Issues 1-3, 2010, 75-88

Identification of vacancy defects in UO₂

- <u>Irradiations with electrons</u> from 1 to 2.5 MeV at different fluences between 5x10¹⁷ and 1x10¹⁹ cm⁻²
- (~ 25°C) VDG at LSI (Palaiseau)
- <u>Calculations</u> : Smott Program [1]
 - electron <1.6 MeV :</p>

only O atoms can be displaced damaged layer ~400µm

electron >1.7 MeV :

displacement of both O and U atoms damaged layer ~260µm (U lattice)

The. $E_d(U)=50eV$ [3]

[1] Dunlop A., Lesueur D., Dural J., NIM-B **42**, 182 (1989); [2] J.Soullard, J.Nucl. Mater **135** (1985) 190-196.; [3] C. Meis, J. .Nucl. Mater **341** (2005) 25-30.

PAS (Doppler) electron irradiated UO₂

 \blacktriangleright Lattice SW in UO₂ annealed at 1700°C in Ar/H₂+H₂0

> Characteristic line due to annihilation in one type of vacancy defects

[2] Mohun et al. / Acta Materialia 164 (2019) 512-519

Irradiations α 45 MeV, 1 MeV and 2,5 MeV electrons Positron Annihilation Spectroscopy (Fast Positrons), 300K Lifetime

Calculations in the ABINIT code (Two Components DFT) [1]

Self consistent scheme PSN ^[2] with gradient correction GC for the enhancement factor g; **DFT**(GGA, PBE)+**U** formalism ^[3] to treat the **5***f* electrons; Defects were fully relaxed

	Charge	Lifetime	
	_	PSN+GC	
		(ps)	
Lattice		167	
Vo	0	199	
Vo	2-	195	
Vu	0	304	
Vu	4-	293	
$V_{U}+V_{O}$	0	306	
$V_{U}+V_{O}$	2-	301	
$V_{\rm U} + 2V_{\rm O}(100)$	0	304	Exp.
$V_{\rm U} + 2V_{\rm O}(110)$	0	313	Long lifetime ~210+10 pc
$V_{U}+2V_{O}(111)$	0	316	Long metime 510±10 ps
$2V_U$	0	318	Several Vacancy defects
$2V_U$	8-	289	
$2V_{U}+2V_{O}$	0	339	Neutral or negatively charged
$2V_{U}+2V_{O}$	4-	319	
$2V_{U}+4V_{O}$	0	329	
$2V_{U}+4V_{O}$	2-	365	

Measurement of positron lifetime as a function temperature Is there any negatively charged vacancy ?

[1] J. Wiktor et al Phys. Rev. B 90, 184101 (2014)

Model with 3 Traps : negative ions NI, V°, V⁻

 T_{NI} =170 ps and $T_V = T_V = 310$ ps

 Neutral vacarcy V°

 Cv°(cm⁻³)
 μv°

 6,50E+19
 1,00E+15

>30 times more **neutral** vacancies than negatively charged ones

Negatively charged vacancy V

2v-(cm⁻³)	μ ₀ r	μ ₀ V-	Er(eV)	Vr(s ⁻¹)
2.0E+18	3,40E+16	4,00E+16	1,00E-02	1,00E+11

High binding energy

at Rydberg state of negative ions

short lifetime is constant

Trapping saturation

Formation energies of defects in close stoichiometric (O/U~ 2.005) UO₂[1]

In the undoped $UO_2 V_0$ should be **positive**, hence not detected by PAS

 V_{U} and $V_{U}+V_{O}$ defects should be **negative**, while the $V_{U}+2V_{O}$ should be **neutral**.

Close to stoechiometry , I_0^{2-}, V_0^{2+} , V_U^{4-} DFT LDA+U [2]

[1] 1 J Wiktor, M. Bertolus, G. Jomard, MF Barthe et al, Phys Rev B 90, 184101 (2014), [2] J P Crocombette Phys Rev B 85, 144101 (2012)

	Charge	Lifetime
		PSN+GC
		(ps)
Lattice		167
Vo	0	199
Vo	2-	195
Vu	0	304
Vu	4-	293
$V_{U}+V_{O}$	0	306
V_U+V_O	2-	301
$V_{\rm U} + 2V_{\rm O}(100)$	0	304
$V_{\rm U} + 2V_{\rm O}(110)$	0	313
$V_{U}+2V_{O}(111)$	0	316
2V _U	0	-318
$2V_U$	8-	289
$2V_{U}+2V_{O}$	0	339
$2V_{U}+2V_{O}$	4-	319
$2V_{U}+4V_{O}$	0	329
$2V_{U}+4V_{O}$	2-	365

V_U and *V_U-V_O* are negatively charged close to the middle of the bandgap in close stoechiometric UO₂

> Exp . Long lifetime ~310±10 ps Vacancy defects

 $2V_U$ is 8- close to the middle of the bandgap in close stoechiometric UO_2

We propose

Neutral vacancy defects which are preponderant = Schottky defects Negatively charged vacancy defects = a mixing of $(V_U - V_O)^{2-}$, $(2V_U - 2V_O)^{4-}$

Vacancy defects recombination in UO₂

[1] W.J. Weber, Journal Nucl. Mater. **114** (1983) 213 ; [2] Hj. Matzke, Nucl. Instr. Meth. Phys. Res. B**32** (1988) 455 ; [3] A.Turos, H. Matzke, S. Kwiatkowski, Physical Review Letters **65** (1990) 10.

Dislocation formation in UO₂

6

5

4

3

1

0

Damage (dpa)

Dislocation lines formation in UO₂

Au 4 MeV in situ irradiations ARAMIS/TEM, at the JANNuS-Orsay (CSNSM)

Fig. 10. Average loops diameter as a function of fluence for 4 MeV Au irradiations at –180, 25 and 600 $^\circ\text{C}.$

Dislocation lines are formed by loop overlapping with increasing fluence [1]

[1] C. Onofri et al. / JNM 482 (2016) 105-113; [2] JNM 494 (2017) 252-259

At 25°C g=111, a)non irradiated,b) 7x10¹³ cm⁻², c) 5x10¹⁴ cm⁻²

Dislocation lines formation in UO₂

Au 4 MeV in situ irradiations ARAMIS/TEM, at the JANNuS-Orsay (CSNSM)

∆T = -180 °C

● T = 25 °C

♦ T = 600 °C

At 25°C g=111, a)non irradiated,b) 7x10¹³ cm⁻², c) 5x10¹⁴ cm⁻²

Careful identification of the nature, size and density of loops and dislocations [2].

The dislocation lines, formed by loop overlapping with increasing fluence, are very similar to those induced under mechanical stress.

C. Onofri et al. / JNM 482 (2016) 105-113; [2] JNM 494 (2017) 252-259

MF Barthe, INSPYRE School 1, Delft NL 13-17/05/2019

S

Dislocation lines formation in UO₂

Exp, TEM Au 4 MeV, at 600°C with increasing dpU

Cemht

He location in UO₂ lattice Evolution as a function of temperature

He location in UO₂

UO_2 Single crystal, ³He 50 keV (Rp=0.18 μ m)

NRA / channeling 3 He (d, p) α

	As implanted	600°C/ 60min
U SIA octahedral	0.03	0.03
U and O random	0.07	0.03
He random	0.03	0.03

Code McChasy

As-implanted

He position in UO₂ lattice is the octahedral site[1,2]

1.2

U Exp

He Exp

U Sim

He Sin

-2 0 2 4

Tilt Angle

[110] Axis

[1]F.Garrido, L.Nowicki, G.Sattonnay, T.Sauvage, L. Thomé, Nuc. Instru. Methods. Phys.Research, 196, 2004 [2]T.Petit, M.Freyss, P.Garcia, P.Martin, M.Ripert, J.P.Crocombette, F.Jollet, J. Nucl. Mater. 320 (2003)133 [3] K. Govers, S. Lemehov, M. Hou, M. Verwerft Journal of Nuclear Materials 395 (2009) 131–139.

He location in UO₂

As-implanted

He position in UO₂ lattice is the octahedral site[1,2]

[1]F.Garrido, L.Nowicki, G.Sattonnay, T.Sauvage, L. Thomé, Nuc. Instru. Methods. Phys.Research, 196, 2004 [2]T.Petit, M.Freyss, P.Garcia, P.Martin, M.Ripert, J.P.Crocombette, F.Jollet, J. Nucl. Mater. 320 (2003)133 [3] K. Govers, S. Lemehov, M. Hou, M. Verwerft Journal of Nuclear Materials 395 (2009) 131–139.

UO₂ Single crystal, ³He 50 keV NRA / channeling

	As	600°C/	800°C/
	implanted	60min	30min
U SIA octahedral	0.03	0.03	0
U and O random	0.07	0.03	0
He random	0.03	0.03	0.95

After 800°C/60 min He Randomly distributed

He Bubbles ? [3]

As-implanted

[1]F.Garrido, L.Nowicki, G.Sattonnay, T.Sauvage, L. Thomé, Nuc. Instru. Methods. Phys.Research, 196, 2004 [2]T.Petit, M.Freyss, P.Garcia, P.Martin, M.Ripert, J.P.Crocombette, F.Jollet, J. Nucl. Mater. 320 (2003)133 [2] G. Sattonnay, L. Vincent, F. Garrido, L. Thomé J. Nuc. Mat. 131, 2006

He 50 keV (0.3 at. %, 0.3 dpa) in the first 100 nm under the surface

Stage 3 (700°C) Nature of Vacancy defects evolves due to He precipitation ?[1]

<u>He 500 keV</u>: (0.3 at. %, 0.3 dpa) 1000°C 35 min, nano-bubbles appear after an annealing stage (10²⁴ /m³, a few nm) [2]

[1] T Belabib Thesis, [2] C Sabathier, G. Martin, A. Michel, G. Carlot, P. Garcia F-Bridge WP1.1 and 2.2 joint meeting, Orleans, May 2011

Conclusions

Knowledge of the behaviour of materials under irradiation to foresee the evolution and lifetime

Separate effects studies

Impurity and defect introduction (Irradiations) : control parameters

+

Characterizations : microstructure (various scales and techniques), chemical composition (concentration, distribution, profile,...)

Sensitive complementary techniques

Fundamental data on impurity and defects : Em, Eb, nature, size, concentration.....

Mechanisms

Thank you for your kind attention

