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1. MATERIAL TEST REACTORS 
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CONDITIONS IN MATERIAL TEST 

REACTORS 

MTRs are quite different from Nuclear Power Plants (NPP’s) in the fact that the 
produced neutrons are used for experiments and isotope-production in stead of 
electricity. 

 low coolant water temperature  

 low pressure environment 

 possible use of aluminium as construction material 

 

High neutron flux is required to speed up the aging of materials and (maybe) the  
burn-up of fuels 

 higher fissile isotope density required (U atomic density, enrichment) 

 Use of U3Si2 plates at ~20% enrichment in U-235  

 

The reactor needs open spaces to insert ‘rigs’ (experiments or isotope production rigs) 
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NEUTRON FLUX AND SPECTRUM 

• Most MTRs are water-
cooled, and their 
spectrum is usually 
somewhat softer than that 
of LWRs 

 

• Simplified description of 
spectrum in terms of: 
• Fast region: DPA’s  

• Thermal region: 
transmutation (fission) rates 

 

• Experimenters have the 
option of ‘spectral 
matching’: 
• Shielding (Cd, Hf) 

• Additional moderation 
(water, graphite) 
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HFR CORE 
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HFR CORE LAY-OUT 
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CAPSULE EXPERIMENT LAY-OUT 
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2. FUEL EXPERIMENT TYPES  
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FUEL DEVELOPMENT 

1. Technology Down Selection 

Basic principles 

 

Technology and concept 
verification 

2. Final selection and integration 

Component testing in 
relevant and/or controlled 
environment 

 

 

 

3. Fuel Qualification Testing 

Proof of concept 

 

Performance at high 
power or transients 

4. Full-scale 
demonstration 

Qualified fuel testing in 
power reactor 

Paper studies 

& 

Laboratory 

 

MTR 

 

Laboratory 

& 

MTR 

 

Power Plant 
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‘INTEGRAL’ VS ‘SEPARATE EFFECTS’ 

Integral tests are simulations of ‘the real thing’.  

• Carried out to: 

• Provide proof of safe behavior within a set of conditions 

• Confirm predictions of fuel performance codes 

• Determine failure criteria for fuel performance codes 

• Nominal conditions, maximum/extreme conditions, transients 

 

Separate effects tests provide data on material behavior at a set of  

well-defined conditions (temperature, pressure etc.)  

• Ideally, varying one parameter ceteris paribus 

• Carried out to provide input data for: 

• mechanistic models 

• fuel performance codes  
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‘INTEGRAL’ VS ‘SEPARATE EFFECTS’ 
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(HBWR) PRESSURIZED WATER LOOP 

Schematic  

of a 

HBWR 

steady 

state loop 

system 
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EXAMPLE INTEGRAL TEST:  

POWER RAMP TESTING 
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EX: FUEL FAILURE IN RAMP TESTS 
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EX: FUEL FAILURE IN RAMP TESTS 
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HFR STANDARD DRY CAPSULES 
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EXAMPLE 2: HTR PEBBLES 

• Five HTR-PM fuel pebbles encased in graphite half shells 

• Surrounded by a steel containment placed inside the HFR 

(REFA) 

• Question: release of activity from failed TRISO particles 

during irradiation?  
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EXAMPLE 3: CREEP TEST 

Bellow 

 

 

 

 
 

6 Samples 

 

 

Design goals: 

• Sample temperature tunable in the 

range of 400-1200°C 

• Online control of sample stress in the 

range of 10-100 MPa 

• Multiple samples to be individually 

measured simultaneously 

• Online displacement measurement 

with an accuracy of <10 µm 

 

Selected method: capacity 

measurements with  

parallel plates: 

               

          C = k εo (A / d) 
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3. EXPERIMENT DESIGN  

AND REALIZATION 
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 Starts with customer 

requirements. 

 Concept design 

 Final design 

 Fabrication  

 Assembly 

 Commissioning 

 Irradiation 

 Decommissioning / dismantling 

 Post irradiation examination 

 Waste / data / archive material 

 

 

 

DESIGN PROCESS 
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 Starts with customer 

requirements. 

 Concept design 

 Final design 

 Fabrication  

 Assembly 

 Commissioning 

 Irradiation 

 Decommissioning / dismantling 

 Post irradiation examination 

 Waste / data / archive material 

 

 

 

DESIGN PROCESS 

 Specimen type, component 

qualification. 

 Irradiation temperature 

 Flux requirements 

 Duration of the irradiation, DPA, 

burn-up 
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PROJECT TEAM + ENVIRONMENT 

Project 
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Engineer 
Research 

consultant 

Nuclear 

analysis 

specialist 

Thermo-

mechanic 

analysis 

specialist 

Drawing office 

Operations  

(reactor, labs) 

Safety comittees 

‘’Customer’’ 

Workshop 
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 Starts with customer 

requirements. 

 Concept design 

 Final design 

 Fabrication  

 Assembly 

 Commissioning 

 Irradiation 

 Decommissioning / dismantling 

 Post irradiation examination 

 Waste / data / archive material 

 

 

 

DESIGN PROCESS 

 Standard facilities  

 Design code, usually ASME 

 Lessons learned earlier designs   

 Material properties earlier irradiations   

 Design report / proposal 

 Initial analysis, TMA, TMH, MCNP, HAZID 

 Submission to customer and committees 

 

 

2.4202/19.153136    EU DuC=0E001 



27 

NUCLEAR ANALYSIS 

• MCNP/FISPACT is used to model the 

HFR core 
• Having an MCNP model for the reactor is 

needed for licensing 

 

• An MCNP model is made for each 

experiment and placed inside the full 

core model 

 

• Relevant output: 
• Neutron spectrum seen by the samples (dpa, 

transmutation rates) 

• Fuel power vs. time 

• Fuel and material compositions post-

irradiation 

• Fuel and material activities post-irradiation 

 Duration of irradiation 
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1-D THERMOMECHANIC ANALYSIS 

• The heat sink 
temperature is 
provided by 
water cooling 
(~50 oC). 

• Temperature 
control at the 
HFR is 
performed with:  
 Gas mixtures  

 Gas gaps 
between the 
different 
containments. 

 Heaters are 
also possible 
but are usually 
omitted  
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 Starts with customer 

requirements. 

 Concept design 

 Final design 

 Fabrication  

 Assembly 

 Commissioning 

 Irradiation 

 Decommissioning / dismantling 

 Post irradiation examination 

 Waste / data / archive material 

 

 

 

DESIGN PROCESS 

 Design and Safety report. 

 According to ASME code. 

 Verification against customer 
requirements 

 Elaboration of analysis on 2D 
or 3D thermo-mechanical 
design, sensitivity studies 

 Safety assesment. Using 
HAZID, HAZOP or FMEA. 

 Approval safety committees and 
regulator 

 Informed to customer  

 Depending on the outcome 
fabrication drawings might need 
updates. Tolerances, radii etc. 

 Fabrication can start.  
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 Parts are (mostly) fabricated on-site 

 For active specimens, assembly is 
performed in hot cell 

 To comply with all safety, ASME and 
design requirements the parts and 
assemblies are accompanied with 

 Material certificates 

 X-ray inspection on critical welds 

 Dye-penetrant inspection 

 Proof pressure tests 

 Helium leak test  

 Dimensional records on the 
critical parts. 

 Assembly is followed by the FAT , 
factory acceptance tests. 

 Depending on quality requirements 
the dimensional records can be used 
for as-built analysis. And possible 
irradiation targets are revisited.    

 

 

 

 

 Starts with customer 

requirements. 

 Concept design 

 Final design 

 Fabrication  

 Assembly 

 Commissioning 

 Irradiation 

 Decommissioning / dismantling 

 Post irradiation examination 

 Waste / data / archive material 

 

 

 

DESIGN PROCESS 
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 Starts with customer 

requirements. 

 Concept design 

 Final design 

 Fabrication  

 Assembly 

 Commissioning 

 Irradiation 

 Decommissioning / dismantling 

 Post irradiation examination 

 Waste / data / archive material 

 

 

 

DESIGN PROCESS 

 Commissioning at the HFR is 
safety and quality driven. It 
consists of: 

 Site acceptance tests, 

 Validation of 
instrumentation 

 Test fitting of the 
irradiation rig in a 
reference facility 

 Inspection of sodium level 
for sodium containing rigs. 

 SAT report 

 Approval for integration in 
the reactor hall. 

 Cold SAT: Integration of the 
irradiation rig in the reactor 
instrumentation and online 
monitoring. Verification of 
functionality 
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EXAMPLE: 

X-RAY VS. MODEL VS. DRAWING  
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 Starts with customer 

requirements. 

 Concept design 

 Final design 

 Fabrication  

 Assembly 

 Commissioning 

 Irradiation 

 Decommissioning / dismantling 

 Post irradiation examination 

 Waste / data / archive material 

 

 

 

DESIGN PROCESS 

 Before the start of each irradiation 
cycle checked-out. 

 Operator set and verify all SSS 

 Initial gas-mixtures are purged 

  Irradiation  

 Gathering Data (temperature, 
gas composition, flux SPND)  
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HFR CONTROL ROD MOVEMENT 
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FLUX PROFILE BOC-MOC-EOC 

The flux peak is 

just below core 

centreline (CLC) 

 

CLC 

Begin Of Cycle (BOC)  

-10 cm 

-20 cm 

-30 cm 

+30 cm 

+20 cm 

+10 cm 

End Of Cycle (EOC) 

Maximum value shifts upward about 5 cm during 

a cycle -> Irradiation facilities can follow the flux 

profile in case required, with a Vertical 

Displacement Unit (VDU) 

• An HFR cycles takes 30 days 

• The flux buckle shifts upwards during a cycle  vertical 

displacement of experiments needed 
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ONLINE MONITORING 
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MONITORING OF  

BOUNDARY CONDITIONS 

Online monitoring of boundary conditions for experiments is 

needed to reconstruct their irradiation history: 

 

• Sample temperature (almost) 

 

• Total fluence on sample (and neutron spectrum)  

  Burnup, final chemical state of the fuel… 

 

• Time-dependent Flux (=fluence rate) on sample  

   Fuel power / fission rate / fission gas production rate…  

 

Therefore we add thermocouples, fluence detectors and 

SPNDs to experiments (as close as possible to the samples). 
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THERMOCOUPLES 

Thermocouples 

• Seebeck effect: electron movement from hot to cold in conductors. 

• You always need two different conductors to measure a difference 

(1100 oC) Drift of nearly 100 °C in Type C 

thermocouples in fluences exceeding 1021 

n/cm2 

(1200 oC) ‘Drift exceeds 50 °C in all 3 type K and 

1 out of 5 type N thermocouples within 200 

hours’ 
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Annular 
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MOX  
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ACTIVATION MONITOR SETS AND GSW 

Gamma Scan Wires (GSW) are simply stainless steel wiresplaced inside the 

experiment. A post-irradiation gamma scan reveals (at least qualitatively): 

−59Co (n,) 60Co: thermal fluence 

−54Fe (n,p) 54Mn: fast fluence 

Neutron monitor sets are used to make gamma scan curves quantitative 

Monitor set     Gamma scan of a GSW 
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SPND 

Self-Powered Neutron Devices 

 

• Neutron absorption in the central  

emitter causes emission of electrons  

(β- radiation) 
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LVDT FOR DIMENSION CHANGE AND P  

Linear Voltage Differential Transformer (LVDT) 

• made for MTRs by IFE (‘Halden Reactor’) 

• consists of wire coils wound around a magnetic stick 

• an LVDT can be used to measure for instance: 

• Elongation due to thermal expansion or mechanical stress 

• Fuel swelling and creep 

• Pressure (if attached to a bellow)  

• highly resistant to radiation 

• LARGE! 
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ON-LINE PRESSURE MEASUREMENTS 

• Determine 

volume before 

irradiation 

(tricky!) 

• Record 

temperature of 

the target 

continuously 

• Assume that 

the 

temperature 

profile is 

constant 
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 Starts with customer 

requirements. 

 Concept design 

 Final design 

 Fabrication  

 Assembly 

 Commissioning 

 Irradiation 

 Decommissioning / dismantling 

 Post irradiation examination 

 Waste / data / archive material 

  

 

 

 

DESIGN PROCESS 

 In dismantling cell HFR 

 Concrete cells HCL  
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 Starts with customer 

requirements. 

 Concept design 

 Final design 

 Fabrication  

 Assembly 

 Commissioning 

 Irradiation 

 Decommissioning / dismantling 

 Post irradiation examination 

 Waste / data / archive material 

 

 

 

DESIGN PROCESS 

 The outcome of a program is 
usually 

 Data 

 Archive material 

 waste  
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 Starts with customer 
requirements. 

 Concept design 

 Final design 

 Fabrication  

 As-build TMA 

 Assembly 

 Commissioning 

 Irradiation 

 Initial irradiation TMA 

 Decommissioning / dismantling 

 Post irradiation examination 

 Gathering material properties 

 Post irradiation TMA  

 Waste  

 

 

 

DESIGN PROCESS 
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1. It is extremely important to define the 'research question' in detail 
upfront 

 

2. Innovative experiments should start in the lab 
 

3.    The design of an irradiation experiment is a game of trade-offs: 
a) More safety barriers vs. more space 

b) More instrumentation vs. more samples 

c) More Redundancy vs. more information content 

i. For samples 

ii. For instruments 

d) Results (burn-up) faster vs. a better correspondence to ‘reality’ 

 

4.  As a result, there is (and should be) some tension between project 
 manager and researcher.  

 

LESSONS LEARNED 
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