

Investigations Supporting MOX Fuel Licensing in ESNII Prototype Reactors

Simulation methods and multiscale modelling

Pär Olsson – KTH Royal Institute of Technology, Sweden Marjorie Bertolus – CEA Cadarache, France

polsson@kth.se

First INSPYRE school, TU Delft, 2019-05-14

Multiscale phenomena

First INSPYRE school, TU Delft, 2019-05-14

The structure of condensed matter

(One equation to rule them all)

The many-body Schrödinger equation describes condensed matter in general:

The SE Hamiltonian can be subdivided into kinetic and potential terms:

These terms can be divided further into ionic- and electronic terms:

 $H\Psi = E\Psi$

$$H = T + V$$

$$\left\{ egin{array}{ll} T=T_{
m n}+T_{
m e} \ V=V_{
m nn}+V_{
m en}+V_{
m ee} \end{array}
ight.$$

Thus the full Hamiltonian can be written as:

 $H = T_{\rm n} + T_{\rm e} + V_{\rm nn} + V_{\rm en} + V_{\rm ee}$

The adiabatic approximation

(How we can make headway and separate stuff?)

The Hamiltonian

Electrons vs ions: Electron mass << ion mass $m_{
m n} pprox 10^5 m_{
m e}$

- Electrons "see" ions as fixed particles.
- lons "see" electrons as a fixed potential surface.

Life according to electrons

Life according to ions

The adiabatic approximation

(The Born-Oppenheimer approximation)

- We can separate the problem into an electronic one and an ionic one
- Materials under irradiation needs a good description of ion dynamics
 - \rightarrow we need good potential energy surfaces!
 - OR: we need good interatomic interactions
 - OR: we need good interatomic potentials
 - OR: ...
- We can either go hard core quantum mechanics (often called *ab initio*, or *electronic structure*)
 - Best, or most efficient and reliable, method: Density Functional Theory (DFT)
- Or we can make classical approximation models (often called empirical potentials, or interatomic potentials)
- Quick walk-through of these two branches!

Electronic structure methods $H\Psi = E\Psi$

- Approximate resolution of Schrödinger equation → Predictive and precise
- Transferrable, all elements and combinations possible
- High cost → Size of system and time limited
- Density Functional Theory: ~1000 atoms
- Exploration of configurational space mainly through energy minimization (quasi-static)
 → Calculations at 0 K.

Ab initio molecular dymanics is a strongly developing field.

Atomic scale simulations (What level of approximation is appropriate?)

Empirical potentials

• $E = f(r_i)$

- Atoms interact through parameterized analytical potential → Very quick!
- Possible to study large systems: 10⁶-10⁹ atoms, and time evolution up to ns (molecular dynamics)
- Results only as good as the data on which model is fitted
- No description of electronic or magnetic effects
- Low transferrability

Data yielded by atomic scale methods (What can we actually calculate?)

Fundamental results: total energy of a system

From this energy, its derivatives and the simulation of the system evolution in time one can get

- Cohesion energies, formation enthalpies
- Relative stability of various phases or configurations
- Equilibrium structures
- Mechanical properties (bulk modulus, elastic constants)
- Formation energies of point- and extended defects in materials
- Activation energies for migration of defects or solutes
- Incorporation energies and site of solutes in materials
- Precipitation or solution of solutes in materials
- Bonding and dissociation energies of complex/extended defects
- Vibration modes phonons
- Thermodynamic data: free energies, calorific capacities...
- Simulation of irradiation damage: displacement cascades

So how do we do this?

Electronic structure

Electronic Structure Theory

(How do electrons feel about one another?)

Problem reduced to treat electrons only

 $H\Psi_{\rm e} = \epsilon\Psi_{\rm e}$

Many-body problem scaling: Horribly steep!

Kohn, Hohenberg and Sham (1964-65): The total energy for the ground state is an **exact** functional of the electron density n(**r**). Nobel Prize 1998!

Kohn-Sham equations (Electron group therapy)

Unknown!

 $n(\mathbf{r})$

Only one electron at a time!

$$H\Psi_{1e} = \epsilon \Psi_{1e}$$

More explicitly: (In atomic units: $\hbar^2 = e^2/2 = 2m_e = 1$)

$$\left[-\nabla^2 + V_{\rm eff}(\mathbf{r})\right] \boldsymbol{\psi}_i(\mathbf{r}) = \boldsymbol{\varepsilon}_i \boldsymbol{\psi}_i(\mathbf{r})$$

The effective potential:

$$V_{\text{eff}}(\mathbf{r}) = V_{\text{eff}}[n(\mathbf{r})] = V_{\text{ext}} + 2\int d^3r' \frac{n(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} + V_{\text{xc}}[n(\mathbf{r})]$$

...and the electron density:

$$n(\mathbf{r}) = \sum_{i=1}^{n} |\psi_i(\mathbf{r})|^2$$

Ν

r_x

Self-consistency

Remaining issues (The really hard stuff)

How do we approximate the exchange-correlation?

 $V_{\rm xc}[n({\bf r})]$

How do we represent the orbitals?

How do we represent the potential?

Very technical problems!

How to calculate stuff

Absolute DFT energy usually not so good.

In certain cases it can be!

but...

Relative energies!

Comparison of "as similar as possible" simulation boxes.

In order to get the best possible energetics:

- Keep the boundary conditions identical.
- Keep all (possible) internal parameters identical.
 - k-point grid, cut-off energy, etc.

The $\Delta E(ref-int)$ can reach about 0.01 eV precision!

- Compare the same number of atoms.
- Converge as far as possible/necessary the internal parameters.

Actinide compounds

- Complex materials
- Cations exhibit several oxidation states
- 5*f* electrons are localized in many compounds
 ⇒ Strong electronic correlation

UO₂: Mott insulator

- Insulating character due to electronic correlation
- Gap between two like character bands (5*f*)
- Different from charge transfer insulators: gap between anion and cation states
- Band theory finds it metallic

Standard approximations of Density Functional Theory (LDA, GGA)

- Do not take into account strong electronic correlations
- Mott insulators, in particular UO₂, predicted as metals
- DFT+U, or more sophisticated, method needed

Particularities for nuclear fuels

(Why heavy elements cause heavy calculations)

DFT + U $H_{\text{Hub}} = t \sum_{\langle i,j \rangle,\sigma} (c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.}) + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$ Conductor to insulator transition $E_{\text{DFT}+U} = E_{\text{DFT}} + E_U = E_{\text{DFT}} + E_{\text{Hub}} - E_{\text{dc}}$ DFT conductors to DFT+U insulators x LK

conductors ↔ insulators

Classical interatomic potentials

- Analytical functions representing interatomic interactions depending only on atom coordinates
- General form:

$$V = \sum_{i}^{N} V_{1}(r_{i}) + \sum_{i,j}^{N} V_{2}(r_{i},r_{j}) + \sum_{i,j,k}^{N} V_{3}(r_{i},r_{j},r_{k}) + \dots$$

External field Pair term Three-body term n-body terms

- Parametrized on structural, physical and thermodynamical properties from experiments or electronic structure calculations.
- Mathematical function different for each type of system (bonding)
 - Ionic: Buckingham
 - Covalent solid: Tersoff , Stillinger-Weber, EDIP
 - Metallic: (Modified) Embedded atom method ((M)EAM)
 - Van der Waals: Lennard-Jones, Morse
 - Organic molecules: Force fields
- Parametrization different for each system/material

Empirical potentials for UO₂ (*The compulsory example for INSPYRE*)

- UO₂: mostly ionic material with polarisable ions
- Potentials: sum of several terms
 - Very short range (Ziegler-Biersack-Littmark) for cascades

Short range (SR) term: Buckingham, Born-Mayer-Huggins or Morse

$$V_{SR}(r_{ij}) = A_{ij} \exp(-r_{ij} / \rho_{ij}) - \frac{C_{ij}}{r_{ij}^{6}}$$

Long range Coulomb interaction

$$V_{Coulomb}(r_{ij}) = \frac{Q_i Q_j}{4\varepsilon_0 r_{ij}}$$

Polarizability can be taken into account through core-shell formalism

Atom: core + shell linked by a spring Pair interaction between atoms *i* and *j*: Core(*i*) Core(*j*) + Core(*i*) Shell(*j*) + + Shell(*i*) Core(*j*) + Shell(*i*) Shell(*j*)

Existing potentials for UO₂ (*Potentially the state of the art?*)

- Pair potentials
- Some core-shell models
- Different potentials: analytic form + parametrization
- Currently no decent charge transfer potential

Interaction	Polarisation	Potential
Buckingham	Rigid	Arima, Sindzingre
Buckingham/Morse	Rigid	Basak, Yamada, Morelon
Fitted	Rigid	Tiwary
Buckingham	Rigid/Shell	Walker
Buckingham	Shell	Grimes

T. Arima *et al.*, J. Alloys. Compd. 400, 43 (2005)
P. Sindzingre *et al.*, J. Phys. C: Solid State Phys. 21, 4017 (1988)
C.B. Basak *et al.*, J. Alloys Compd. 360, 210(2003)
K. Yamada *et al.*, J. Alloys Compd. 307, 10 (2000)

N.-D. Morelon *et al.*, Philos. Mag. 83, 1533 (2003)
P. Tiwary *et al.*, Phys. Rev. B 80, 174302 (2009)
J.R. Walker *et al.*, J. Phys. C: Solid State Phys. 14, L979 (1981)
R.W. Grimes *et al.*, Philos. Trans. R. Soc. Lond. A 335, 609 (1991)

Molecular dynamics

Low transferability but fast!

- Classical MD the true electronic interactions are approximated by an interatomic potential, using some functional form, **fitted** to *ab initio* and experimental data.

- Ab initio MD forces are directly given by *ab initio* calculations: Hellmann-Feynman theorem. Precise but slow!
- $\frac{d}{dt}(m_i \mathbf{v}_i) = \mathbf{F}_i = -\nabla V$

$$\frac{d\boldsymbol{r}_i}{dt} = \boldsymbol{v}_i$$

- Once we have a way to calculate the interactions between atoms, we can use molecular dynamics (MD)
- A general way of solving the equations of motion for an N-body system
- Kinematics and Newton's equations applied

Molecular dynamics (How to move atoms around)

Molecular dynamics considerations (A question of stepping in time)

Many numerical recepies for MD implementations

Crucial issue

- The timestep!
- It must be small enough to capture typical atomic vibrations, or the results will be unphysical.
- Limits the achievable simulation time (drastically)
- What is a reasonable timestep then?
 - Near the femtosecond scale (sometimes much smaller)!

Example: Threshold displacement damage simulation (How hard do we need to hit?)

Example:

- MD simulation of threshold damage conditions
- bcc Fe lattice (504 atoms)
- 20 eV impulse near $\langle 211 \rangle$ direction
- Time step: Varying from 0.1 to 3 fs
- 1.5 ps simulated time
- AIMD: 20.000 core-hours
- CMD: 6 core-seconds

Partial conclusions

- Atomic scale simulations can give a lot of important information for
 - Direct comparison with experiment
 - Input data for larger scale methods
- Electronic structure:
 - predictive
 - transferrable
 - very expensive
- Empirical potentials:
 - very fast
 - entirely dependent on fitting data
 - low transferrability

- Molecular dynamics is a method of moving atoms
- Can use either electronic structure or empirical potentials as force field

Beyond the atomic scale (in baby steps)

Diffusion

(What really matters in the long term)

- Molecular dynamics can be used to evolve a system of atoms the "real" way
- MD is limited to ns time (or μs at some rare conditions)
- Microstructure evolution (post cascade dynamics) is generally driven by *diffusion*
- Diffusion is the large scale effect of atomic scale jumps
- Defect diffusion, atomic diffusion (through defect mechanisms): essentially all diffusion is driven by defect jumps
- How can we **track** defect jumps without explicitly treating all the vibrations that **lead** to the jump transitions?

\frown

(Playing dice with atoms)

Molecular dynamics (what really happens)

Kinetic Monte Carlo

- Kinetic Monte Carlo to the rescue!
- Diffusive transitions are generally rare events: a jump only occurs after many, many vibration periods, or "attempts"
- The system suffers memory loss, it doesn't remember where it came from -> a Markov chain, with Poisson statistics!
- The probability of the system staying in a certain basin is: P_{stay}(t) = exp(-r_{tot}t),
 where r ______ is the total rate for escape from the particular states.

where r_{tot} is the total rate for escape from the particular state.

Kinetic Monte Carlo (how we could model it)

Each pathway has its own rate constant r_{ij}, thus the total escape rate is:

The staying probability P_{stay}(t) is usually not the most interesting quantity in a simulation.

From the definition of P_{stay}(t) we can deduce the probability distribution P(t) for the time of first escape:

and the average time <mark>∆t</mark> for escape will be:

$$\Delta t = \int_0^\infty t P(t) dt = rac{1}{r_{\mathrm{tot}}}$$

 $r_{\rm tot} = \sum r_{ij}$

 $P_{\text{stay}}(t) = e^{-r_{\text{tot}}t}$

 $\int_{0}^{t} P(t)dt = 1 - P_{\text{stay}}(t')$ $P(t) = r_{\text{tot}}e^{-r_{\text{tot}}t}$

The KMC method

Barrier energy and attempt frequency can be had from electronic structure or empirical atomistic methods!

KMC example: homogeneous nucleation in A-B alloy

Frame 001 | 15 May 2006 |

- Behera et al studied oxygen diffusion in UO_{2+x} using KMC
- Three models, simplest one seems not no capture diffusion properly
- Results depend sensitively on binding energy of di-interstitial O

Oxygen diffusion in UO_{2+x}

Behera et al, JNM 472 (2016) 89

Beyond the atomic scale (for real)

Mesoscale modeling

(Atoms? We don't need no stinkin' atoms!)

- Mesoscale modelling aims at describing the evolution of microstructure under in-pile or ion irradiation
- In particular, evolution of the populations of point defects, defect clusters and fission gas atoms and bubbles
- Defect populations control a large number of properties of material and macroscopic evolution, e.g. nucleation and growth of bubbles and dislocation loops, porosity, redensification, radiation enhanced diffusion
- Scales considered: one or several grains, macroscopic times

At this scale both intra- and intergranular diffusion is active

Mesoscale modeling of fission gas behaviour

Intragranular phenomena Modelling of an average grain

- Intergranular phenomena
- Use of an equivalent sphere defined by a free surface / crack

- Kinetic Monte Carlo
 - Lattice KMC (what we talked about actually atomistic)
 - Object KMC (no atoms, only defects and other objects)
- Rate theory methods, including cluster dynamics
 - Forget spatial correlations (everything governed by concentration equations)
- Phase fields, FEM, etc
 - There are many levels of methods on the way up to component scale, if you want/need to

Mesoscale methods (I wish we had more time...)

Modelling of multiscale phenomena

Thank you for your attention

INSPYRE has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754329.

This project is part of the research activities portfolio of the Joint Programme on Nuclear Materials.