

Synopsis

> HFR description

- Transmutation: Minor-Actinide irradiation tests.
 HELIOS, MARIOS, MARINE and SPHERE irradiations: purpose, description and status.
- Conclusions.

✓ High flux;

- ✓ 45 MW thermal power;
- ✓ Stable and constant flux profile in each irradiation position;

✓ Main applications:

- Industrial and Medical radio isotope production
- Nuclear energy irradiation services
- R&D

Cooling water outlet

31 operation days per irradiation cycle, 9 cycles a year

- Tank-in-pool multipurpose reactor
- First criticality in 1961
- > Owner: European Commission
- Operator and License Holder: NRG
- License valid until at least 2025
- Availability approx. 290 days/year

- \blacktriangleright 9 × 9 core lattice
- 33 fuel assemblies (converted to LEU in 2006)
- 6 control elements
- 23 reflector elements
- 17 in-core positions + 22 PSF positions
- 12 neutron beams
- Useful height 600 mm
- Useful diameter 60 mm (65 mm in PSF)

The stable and constant flux profile in each irradiation position is a unique HFR feature

Design and Modeling:

- Drawings
- Neutronics
- Thermal-mechanics
- Data analysis & interpretation
- QA/QC + X-ray lab
- Na handling lab
- Gas handling stations
- Multiple PIE options

Synopsis

> HFR description

- Transmutation: Minor-Actinide irradiation tests.
- HELIOS, MARIOS, MARINE
 and SPHERE irradiations:
 purpose, description and
 status.
- Conclusions.

Spent fuel and energy demand are going to increase.

> Built-up of Minor Actinides by neutron capture.

- Transmutation of Minor Actinide (Am, Np, Cm) is going to be an option to reduce radio toxicity and footprint in the geological disposal for spent fuel.
- > Otherwise, Finnish/Swedish concept foresees final disposal in granite.

- > Transmutation of minor actinides (MA) can be achieved using:
 - o thermalised neutron facilities (LWRs)
 - o fast neutron spectrum facilities,
 - critical reactors or
 - sub-critical accelerator driven systems (ADS)
- ADS operates in a flexible and safe manner even with a core loading containing a high amount of MA.

Comparis	of	
thermal	and	fast
neutron s	m.	

	PWR UOX			FR (EFR)			
Isotope	$\sigma_{\rm f}$	σ _c	$\alpha = \sigma_{\rm c} / \sigma_{\rm f}$	$\sigma_{\rm f}$	σ	$\alpha = \sigma_c / \sigma_f$	
²³⁷ Np	O .52	33	63	0.32	1.7	5.3	
²⁴¹ Am	1.1	110	100	0.27	2.0	7.4	
²⁴³ Am	0.44	49	111	0.21	1.8	8.6	
²⁴² Cm	1.14	4.5	3.9	0.58	1.0	1.7	
²⁴³ Cm	88	14	0.16	7.2	1.0	0.14	
²⁴⁴ Cm	1.0	16	16	0.42	0.6	1.4	
²⁴⁵ Cm	116	17	0.15	5.1	0.9	0.18	
⁹⁹ Tc	/	9	/	/	0.5	1	

- Americium is one of the radioactive elements that contributes to a large part of the radiotoxicity of spent fuels.
- Transmutation by irradiation in nuclear reactors of long-lived nuclides like ²⁴¹Am is therefore, an option for the reduction of the mass and radiotoxicity of nuclear waste.

ADS Transmutation principle:

- HELIOS: Test on U-free target containing Am. Cercer and Cermet concept

Fast reactor strategy:

 Heterogeneous Recycling: Americium Bearing Blankets (AmBB)

 $(U,Am)O_{2-x}$ with $\approx 10-20\%$ Am irradiated in the SFR radial blankets

Demonstration of concept feasibility:

- **MARIOS**: first separate-effect irradiation of AmBB in MTR
- MARINE: first semi-integral irradiation of AmBB in MTR
- Homogeneous Recycling: Minor Actinide Driver Fuel (MADF)
 - A few percent of Am or MA diluted in the $(U,Pu)O_{2-x}$ driver fuel
 - Prototypical qualification and optimization of the concept

- SPHERE: comparison of pelletized and sphere-packed fuel behavior → Optimization study (Spherepac)

European

Commission

Low He swelling (He atoms isolated in small size defects)

 Potentially significant He swelling.

MABB thermal conditions

1100 to 1400°C *He Implantation and annealing MOX annealing SUPERFACT*

 Low He swelling because of significant release

0.75 He atom per Am-241 atom. 5x more gas production compared to LWR fuel

Synopsis

- > HFR description
- > Transmutation: Minor-Actinide irradiation tests.
- HELIOS, MARIOS, MARINE and SPHERE irradiations: purpose, description and status.
- Conclusions.

Irradiation at HFR with CEA and NRG HELIOS (EUROTRANS, FAIRFUELS)

• Objective:

Determine performance limits of MA incineration. Investigate temperature dependence of fuel swelling and gas release for uraniumfree nuclear fuel containing Minor Actinides.

 Status: irradiated between April 2009 and February 2010. PIE completed.

The experiment during

Pin Nr.	Composition	Microstructure	%Pellet TD Measured	As-fabricated density [g cm ⁻³]		Instr.
				²⁴¹ Am	Pu-tot	
1	$Am_2Zr_2O_7 + MgO$	5-50 µm	91.5	0.66		
2	(AmZr,Y)O ₂	Solid solution	92.6	0.7		TC
3	(Am,Pu,Zr,Y)O ₂	Solid solution	89.7	0.74	0.39	TC
4	(Zr,Am,Y)O ₂ +Mo	65-125 μm	94.1	0.7		
5	(Pu,Am)O ₂ +Mo	>150 µm	96	0.3	1.2	

- Pin 1: Am compounds dispersed in a matrix of MgO with tailored open porosity.
- Pin 2 & 3: Am incorporated in a crystal lattice of inert matrix such a zirconia, with and without Pu.
- Pin 4 & 5: Spherical shape particles embedded in an inert matrix (Mo) with and without Pu.

• During Irradiation

HELIOS 2 - Summary -

• Post Irradiation Examination (PIE) Non Destructive Tests (NDT)

	Before	Before Error		
	irr.	After irr.	margin	(%)
Pin 1	61.92	62.6	± 0.25	1.1
Pin 2	61.24	60.1	± 0.25	-1.9
Pin 3	62.74	60.8	± 0.25	-3.1
Pin 4	59.29	59.3	± 0.25	0.0
Pin 5	62.55	65.8	± 0.25	5.2

✓ Both YSZ pins show slight compaction, possibly due to high porosity;

✓ Molybdenum shows large temperature influence.

parameter	units	caps. #1	caps. #2	caps. #3	caps. #4	caps. #5
experiment		HELIOS I	HELIOS II	HELIOS I	HELIOS II	HELIOS II
material		(Am ₂ Zr ₂ O ₇)+	(ZrYAm)O2	(ZrYPuAm)O2	(ZrYAm)O2	(PuAm)O2
		MgO (porous)			+Mo	+Mo
temperature	С	700	500	1150	500	1100
He fiss. released fraction	%	17,24%	2,70%	35.7%	2.5%	28,66%
Kr released fraction	%	9-23%	0,5-1,7%	21.1%	25%	89.2%
Xe released fraction	%	16-28%	0.26-0.45%	27,50%	18%	79.6%

- Post Irradiation Examination (PIE)
- Destructive Tests
- PIN 4

PIN 5

- Post Irradiation Examination (PIE)
- Destructive Tests (WDS mapping)
- PIN 4

PIN 5

E. D'Agata et all, Journal of Nuclear Materials 465 (2015) 820-834

□ Purpose of the MARIOS (first) separate-effect irradiation of AmBB

- AmBB in SFR: significant He production (Am transmutation) associated with moderate temperatures (500-1500°C)
- The combination (He production / low temperatures) may induce significant fuel swelling
- → Study of gas (He) release and swelling as a function of temperature and microstructure (level of opened porosity)

□ Small pin innovative design:

Each pin includes 6 small AmBB discs $(Am_{0.15}U_{0.85}O_{1.94})$ and is devoted to one given experimental configuration.

- The small pins are set within a Ti shroud containing instrumentation (TCs and FD), the whole being incorporated into a sample holder.
- □ The sample holder is set itself into a channel of a standard TRIO 131 rig

□ Temperature regulation is insured by:

- gas gaps with adjustable He/Ne composition.
- a possible axial displacement of the sample holder to optimise the neutron flux profile.

304 EFPD irradiation in the HFR

- Irradiation conditions of pin n° 3 (most irradiated)
 - → Transmutation rate: ≈ 55 at%
 - → Fission rate: \approx 1.5 at%
 - → He production: \approx 4.7 mg/cm³

Results of Non-Destructive-Examinations (NDE) performed at HFR by NRG within PELGRIMM Capsule 3 Capsule 2

- → Visual inspection and neutron radiography: good behaviour of the pins and the experiment and fragmentation of some discs into 2 pieces (due to thermal gradient).
- → New and important results obtained through the puncturing of the pins and their gas analysis
 - 100% of the He produced under irradiation is released in the 4 small pins at 1000, 1200 and 1300°C

He dissolved in the matrix with high diffusion coefficients

 10, 50 and 90% of the fission gas were respectively released in the small pins at 1000, 1200 and 1300°C

FG mobility is lower than for He and depends on the temperature

- Destructive Examinations (DE) still to be performed at CEA
- DIAMINO in OSIRIS will give information at 600 & 800°C for both dense and opened-porosity microstructures (Irradiation performed, PIE ongoing).

- □ Issue of irradiating AmBB MTR / SFR : High absorption crosssection of Am in thermal neutron flux
 - → Speed-up of transmutation phenomena in MTR higher volume power and He production rate

- higher 'transmutation/fission' ratio

- U → Lowering of the irradiation duration (2000 EFPD for reference AmBB ≈ 6~7 years in SFR!)
- Use the second seco

⇒ Speed-up of He production rate & Higher transmutation/fission ratio

- Sradial flux and LP depression in the pellet
- □ **MARINE** irradiation conditions in the HFR
- → 336 EFPD in HFR (vs 2000 EFPD in SFR)
- → Phenix cladding & Ø_{pellet}: 5.35 mm (vs 7.34 mm in SFR V2b core)
- → Pellet LP and temperature in acceptable accordance with targeted values
- → Acceleration factor for He production: ≈4.0

Instrumentation:

□ 20 Thermocouples: To measure the temperature in the experiment.

- tc 20

tc 19

tc 18

tc 15-16-17

tc 12-13-14 - tc 11

- tc 10 tc 8-9 tc 7 tc 6

> tc 5 tc 3-4 tc 2

tc 1

- **6 Dosimeter:** To measure the integrated fluence/spectrum.
- □ 2 Pressure transducers: To monitor the pressure buildup inside the pins.
- 4 Gamma scan wires: To get an axial integrated value of the neutron flux

Measured Items

Measured Items vs Calculated Items

- □ 2 small pins (U,Pu,Am)O_{2-x} with \approx 20% Pu & 3% Am;
- **Comparison of pellet & spherepack fuel behaviour at medium BU;**
- □ Same LP and cladding temperature for the two pins;
- □ Fabrication by means of Sol/Gel & spherule metallurgy (JRC).

□ SPHERE Irradiation conditions in the HFR

- > The first cycle was performed in 03/2013 followed by a neutron radiogram
- ➢ Pursuing of the experiment between 02/2014 & 03/2015 → 295 irradiation days
- ➤ LP evolution BoL / EoL → 320 / 280 W/cm with position changes at the end of the irradiation
- Fuel max temperature BoL / EoL → 2250 / 2100 °C; BU ~4.5- 5.4 % FIMA Before irradiation

After 1 cycle of irradiation (~28FPD)

Central hole diameter of 1.05mm ± 0.09 mm

Fuel restructuring after 1st cycle

Post Irradiation Examination:

Dismantling and PIE at NRG

Macroscopic image of restructured pellet (left) and Sphere-Pac (right) fuel sample

Conclusions 1/2

□ Irradiation experiments are mandatory for existing fuel improvement and new

fuel development.

- □ Irradiation experiments are often technically challenging
 - → Multi-disciplinary design;
 - → Fuel fabrication and transport;
 - → Irradiation and instrumentation;
 - → PIE with innovative techniques;
 - → Working performed in Hotlab facilities;
- □ Irradiation experiments are particularly suitable to collaborative working

between different institutes

- → Well-defined objectives;
- → Well-defined tasks that can be easily shared between different contributors;

→ Gain of knowledge for the contributing institutes through information exchanges;

→ Cost-sharing between institutes on relatively expensive experiment projects;

Conclusions 2/2

- Presentation of the main features of HELIOS, MARIOS, MARINE and SPHERE experiments.
- Burn Minor Actinides in Fast Reactor is a viable solution to reduce nuclear waste amount.
- □ SPHERE-PAC fuel is promising from fabrication and irradiation point of view.
- □ The most efficient way (opinion of the presenter) to burn MA in fast reactor is using Heterogeneous Recycle
 - \rightarrow Higher amount of MA burned (\cong 20%).
 - \rightarrow In the blanket of FR.
 - → Safety studies didn't have point out problems (opposite to Homogeneous)
- □ There are still some issues to be tested
 - → Behavior of MA fuel under transient condition
 - → Optimization of irradiation temperature in FR:

 - ★ Low temperature → High swelling → the swelling need to be taken into account

European Commission

→ Behavior of MA fuel under high Burn-up conditions

Thank you for your attention...

