

SCHOOL on Generation IV reactors fuel cycle

Thermodynamic aspects of nuclear fuels (Modelling)

Christine Guéneau

Den-Service de Corrosion et du Comportement des Matériaux dans leur Environnement CEA, Université Paris-Saclay 91191 Gif-sur-Yvette, France

13-17 May 2019, Delft, The Netherlands

Outline

- 1 The Calphad method
- 2 Basic Gibbs energy models
- 3 Modelling of the U-Pu-O system
 - 3.1 U-O
 - 3.2 Pu-O
 - 3.3 U-Pu-O
- 4 Calculations on a irradiated MOX fuel
- 5 Conclusion

The Gibbs energy

• The Gibbs energy of a system is defined by:

$$G = H - T S = U + PV - T S$$

Josiah Willard Gibbs (1839-1903)

- *H* is the enthalpy \Rightarrow heat content of the system
- *T* is the temperature
- *S* is the entropy of the system ⇒ randomness of the system
- U is the internal energy of the system \Rightarrow kinetic and potential energies of atoms
- *P* is the pressure
- *V* is the volume

- vibrations bonds
- G is the key function in thermodynamics of materials
- At constant temperature and pressure, a closed system (fixed mass and composition) will be in stable equilibrium if it has the lowest value of the Gibbs energy:

$$dG = 0$$

Thermodynamic equilibrium

•
$$G = H - T S$$

⇒Compromise between low enthalpy and high entropy

 \Rightarrow The A configuration is the lowest possible value of $G \Rightarrow$ Equilibrium

⇒The B configuration is a metastable equilibrium state (local equilibrium)

⇒The intermediate configurations are unstable

⇒The rate at which the system will reach the equilibrium is not provided by thermodynamics

The Gibbs energy

⇒ Thermodynamic potential at given P, T, n

$$G = U + PV - TS = H - TS$$

• H = U + PV \rightarrow Enthalpy (U: internal energy)

•
$$\left(\frac{\partial G}{\partial T}\right)_{P,N_i} = -S$$

Entropy

• $\left(\frac{\partial G}{\partial N_i}\right)_{T,P,N_{j\neq i}} = \mu_i$ • $C_P = -T \left(\frac{\partial^2 G}{\partial T^2}\right)_{P,N_i}$ • Heat capacity

⇒ Key thermodynamic properties to describe the phases

Gibbs energy minimization

- At given *T*, *P*, n_i the equilibrium corresponds to the minimum of the Gibbs energy of the system: dG = 0
- The Gibbs energy of the system G is a linear combination of the Gibbs energies of the phases, G_m^{φ} :

$$G = \sum_{i} m^{\varphi} G_{m}^{\varphi}$$

 m^{arphi} : mole fraction of phase arphi

CALPHAD (CALculation of **PHA**se **D**iagram) method:

• At given T, P, n_i the equilibrium is calculated by minimization of the Gibbs energy of the system: dG = 0

➡ Coupling Gibbs energies and phase diagrams

The phase diagram can be calculated from the phases Gibbs energies

Calphad modeling ➡ Assessment procedure

- Mathematical functions are chosen to describe the Gibbs energy of the phases

 $G_m^{\alpha}(T, p, x_i^{\alpha} or y_k^{(l,\alpha)})$

- The variables are assessed by a least-square minimizing method to reproduce the available thermodynamic and phase diagram data

 For a multi-component system, the equilibrium is calculated by extrapolation from models for binary and ternary subsystems

Good prediction of
both phase diagram and phase
thermodynamic data for multi component systems

➡ SATA (School on Advanced Thermodynamic Assessment)

Sublattice model to describe the phases

The sublattices correspond to equivalent positions i.e. sites belonging to the same Wyckoff position

To simplify the model, several sets of equivalent positions may be combined and treated as a single sublattice

A single sublattice model is used for all the phases with the same crystalline structure

FCC (Faced centered cubic)

(A)1(Va)1

BCC (Body centered cubic)

Model for phases with a fixed composition ⇒ Pure elements, stoichiometric compounds

• G_m^{α} is the molar Gibbs energy of the phase α , referred to the enthalpy of the pure elements in their stable state at 298.15 K and 1 bar (SER: Stable Element Reference).

 $\Rightarrow G_m^{\alpha} - \sum_i b_i H_i^{SER} = a_0 + a_1 T + a_2 T \ln T + a_3 T^2 + a_4 T^{-1} + a_5 T^3 \dots$

 \boldsymbol{b}_i is the stoichiometric coefficient of the element i in the phase α

Model for a regular solution (A,B)

Influence of the interaction parameter L_{AB} on the phase diagram

Model for a real solution (A,B)

Dependence in composition of the interaction parameter **PRedlich-Kister**

 $G_m^{\alpha} = \mathbf{x}_A \circ \mathbf{G}_A + \mathbf{x}_B \circ \mathbf{G}_B + \mathbf{R}\mathbf{T}(\mathbf{x}_A \mathbf{ln}\mathbf{x}_A + \mathbf{x}_B \mathbf{ln}\mathbf{x}_B) + \mathbf{x}_A \mathbf{x}_B \mathbf{L}_{AB}$

 $\Rightarrow L_{AB} = \sum_{v=0} (x_A - x_B)^v v_{L_{AB}} = {}^0L_{AB} + {}^1L_{AB} (x_A - x_B) + {}^2L_{AB} (x_A - x_B)^2 + \dots$

 $^{\nu}L_{AB}=20000$

How to model the U-Pu-O system ?

■1st step: modeling of the U-O, Pu-O and U-Pu binary sub-systems

- Binary interaction parameters for solutions
- G functions for the binary compounds

2nd step: modeling of the U-Pu-O ternary system

- Ternary interaction parameters for solutions
- G functions for the ternary compounds

UO-

U

Sublattice model for non stoichiometric UO_{2±x}

■ Uranium dioxide UO_{2+x} with fluorite structure has a large oxygen composition range

■Compound Energy Formalism + Three sublattice model (U⁺³,U⁺⁴,U⁺⁵) (O⁻²,Va)₂ (O⁻²,Va)

➡ Formation of oxygen vacancies and interstitials compensated by reduction/oxidation of U⁺⁴ into U⁺³/U⁺⁵

➡ Important parameters are: G(UO_{1.5}), G(UO₂), G(UO_{2.5})

[Guéneau et al, JNM 419 (2011) 145]

Thermodynamic properties for stoichiometric UO₂

Even in stoichiometric UO₂, point defects (Oxygen Frenkel pairs, electronic defects) form at high temperature

The increase in the heat capacity for T>1500 K is due to the increase in point defect concentration

Thermodynamic data on non stoichiometric UO_{2±x}

Experimental oxygen and uranium chemical potential data are available

 $\mu_{O_2} = \overline{\Delta G}(O_2) = R T \ln p_{O_2}$

$$\mu_U = \overline{\Delta G}(U) = R T \ln a_U$$

➡ The oxygen and uranium chemical potentials vary strongly with oxygen stoichiometry

Thermodynamic data on non stoichiometric UO_{2±x}

The oxygen potential variation is related to point defect concentration:

- O/M<2: (U⁺³,U⁺⁴) (O⁻²,Va)₂ (Va) ⇒ Oxygen vacancies and U⁺³
- O/M>2: (U⁺⁴,U⁺⁵) (O⁻²)₂ (O⁻²,Va) ⇒ Oxygen interstitials and U⁺⁵

[Guéneau et al, JNM 419 (2011) 145]

Phase diagram data on the U-O system

[Guéneau et al, JNM 419 (2011) 145]

Thermodynamic data on non stoichiometric PuO_{2-x}

■ Plutonium dioxide PuO_{2-x} has a large oxygen composition range with O/Pu<2

■ Three sublattice model (Pu⁺³,Pu⁺⁴) (O⁻²,Va)₂ (Va)

➡ Formation of oxygen vacancies (Va) compensated by reduction of Pu⁺⁴ into Pu⁺³

Phase diagram data on the Pu-O system

The experimental data on melting point data of PuO₂ are very scattered:

- The « reference » data (2670-2700 K) from the 60's-70's measured by thermal analysis in W crucible
- In 2005, Kato et al performed measurements (2850 K) using thermal analysis and Re crucible
- In 2010, De Bruycker et al did new measurements (3017 K) using laser heating (self-crucible)

$\Rightarrow \Delta T \sim 300$ K between old and recent measurements !!

➡ According to the calculations, PuO₂ loses oxygen below its melting point ➡ Congruent melting for O/Pu<2</p>

Melting point data on actinide oxides

Why such large discrepancies bewteen old and new measurements ?

μ(O₂) in PuO₂ >> μ(O₂) in UO₂ ➡ PuO₂ loses oxygen at high temperature ➡ The reactivity PuO₂/W is >> than for UO₂/W ➡ The melting point for PuO₂ was underestimated due to a reaction with the crucible ➡ Laser heating with self-crucible is a suitable method

➡ Model for (U,Pu)O_{2±x}

■ Mixed uranium and plutonium dioxide (U,Pu)O_{2±x} has a large oxygen composition range

Three sublattice model (U⁺³, U⁺⁴, U⁺⁵, Pu⁺³, Pu⁺⁴) (O⁻², Va)₂ (O⁻², Va)

⇒ Ternary interaction parameters between cations have been adjusted to fit experimental data

Experimental thermodynamic data for (U,Pu)O_{2±x}

Defect chemistry in (U,Pu)O_{2±x}

■ Three sublattice model (U⁺³, U⁺⁴, U⁺⁵, Pu⁺³, Pu⁺⁴) (O⁻², Va)₂ (O⁻², Va)

- For O/M<1.9: Oxygen vacancies and U⁺⁴ ⇒ U⁺³, Pu⁺³
- For 1.9<O/M<2: Oxygen vacancies and Pu⁺⁴ ⇒ Pu⁺³, U⁺⁴
- For O/M>2: Oxygen interstitials and $U^{+4} \Rightarrow U^{+5}$

Reduction of U⁺⁴

Reduction of Pu⁺⁴

Oxidation of U⁺⁴

\downarrow UO₂-PuO₂ system

Phase diagram data Guéneau et al, JNM 2011 3400 3400 3300 3300 3200 3200 3100 3100 3000 3000 ≚ 2900 ¥ 2900 2800 2800 Liquidus Bohler 2014 Liquidus Bohler 2014 2700 -○ Solidus Bohler 2014 ∇ 2700 -○ Solidus Bohler 2014 ∇ • De Bruycker 2010 De Bruycker 2010 2600 -□ Solidus - Kato 2009 2600 -□ Solidus - Kato 2009 Liquidus - Kato 2009 Liquidus - Kato 2009 2500 -2500 -Liquidus - Lyon and Baily Liquidus - Lyon and Baily 2400 -2400 0.2 0.8 1.0 PuO2 0.6 0.4 0.2 0.6 0.8 0.4 1.0 UO2 x(PuO2) UO1.98 PuO1.96 x(PuO1.96) -Lyon and Bailey • « **Reference** » data measured by thermal analysis in **W crucible** - Kato et al Thermal analysis with Re crucible Higher solidus / liquidus T

De Bruycker et al
Laser heating
Consistent with the new melting point of PuO₂ (3017 K).
A minimum is found in the liquidus curve

⇒ The data of Bohler (2014) have to be taken into account to improve the model for the liquid/solid transition

Isothermal sections of the U-Pu-O system

[Guéneau et al, JNM 419 (2011) 145]

Thermodynamic parameters for (U,Pu)O_{2±x}

(Pu⁺³,Pu⁺⁴,U⁺³,U⁺⁴,U⁺⁵)(O⁻²,Va)₂(O⁻²,Va)

Pu-O

MOX : (Pu ⁺³ ,Pu ⁺⁴ ,U ⁺³ ,U ⁺⁴ ,U ⁺⁵)(O ⁻² ,Va) ₂ (O ⁻² ,Va)	$G_{(Pu^{+4})(O^{-2})(Va)}^{MOX} - H_{Pu}^{SER} - 2H_{O}^{SER} = G_{PuO_2}^{MOX} - H_{Pu}^{SER} - 2H_{O}^{SER}$
$G_{(U^{+3})(O^{-2})(Va)}^{MOX} = G_{UO_2}^{MOX} - G_{(U^{+4})(Va)(Va)}^{MOX} + G_{(U^{+3})(Va)(Va)}^{MOX}$	$= -1099562.8 + 505.428856T - 83.31922T \ln T$
$G_{(U^{+4})(O^{-2})(Va)}^{MOX} - H_U^{SER} - 2H_O^{SER} = G_{UO_2}^{MOX} - H_U^{SER} - 2H_O^{SER}$	$-0.00584178T^2 - 2.29241167.10^{-11}T^3 + 913506T^{-1}$
$= -1118940.2 + 554.00559T - 93.268T \ln T + 1.01704254.10^{-2}T^{2}$	$G_{(Pu^{*4})(Va)(Va)}^{MOX} = G_{PuO_2}^{MOX} - 2G_O^{gas}$
$-2.03335671.10^{-6}T^{3}+1091073.7T^{-1}$	$G_{(Pu^{+4})(O^{-2})(O^{-2})}^{MOX} = G_{PuO_2}^{MOX} + G_O^{gas} + 80T$
$G_{(U^{+5})(O^{-2})(Va)}^{MOX} = G_{UO_2}^{MOX} - 58351.62 + 39.67611T + 0.69315RT$	$G_{(Pu^{+4})(Va)(O^{-2})}^{MOX} = G_{PuO_2}^{MOX} - G_O^{gas} + 80T$
$\overline{G_{(U^{+3})(Va)(Va)}^{MOX}} = \overline{G_{UO_2}^{MOX}} - 2\overline{G_O^{gas}} + 747127 - 70.22618T + 1.12467RT$	$G_{(Pu^{+3})(O^{-2})(Va)}^{MOX} = G_{(Pu^{+3})(Va)(Va)}^{MOX} + 2G_O^{gas}$
$\overline{G_{(U^{+4})(Va)(Va)}^{MOX}} = \overline{G_{UO_2}^{MOX}} - 2\overline{G_O^{gas}} + 545210.5$	$G_{(Pu^{+3})(Va)(Va)}^{MOX} = 0.5 G^{Pu_2O_3} - 1.5 G_O^{gas} + 3817.7 + 1.12467 RT$
$\frac{G_{(U^{+5})(V_a)(V_a)}}{G_{(U^{+5})(V_a)(V_a)}} = G_{(U^{+5})(Q^{-2})(V_a)}^{MOX} - 2G_Q^{gas} + 700000$	$G_{(Pu^{+3})(O^{-2})(O^{-2})}^{MOX} = G_{(Pu^{+3})(Va)(Va)}^{MOX} + 3G_O^{gas} + 80T$
$\frac{G_{(U^+)(Q^-)}^{MOX}}{G_{(U^+)(Q^-)}^{MOX} - G_{(U^+)}^{MOX} - G_{(U^+)}^{MOX} + G_{Q}^{gas}}$	$G_{(Pu^{+3})(Va)(O^{-2})}^{MOX} = G_{(Pu^{+3})(Va)(Va)}^{MOX} + G_{O}^{gas} + 80T$
$G^{MOX} = G^{MOX} + G^{gas}$	$L_{(Pu^{+3},Pu^{+4})(O^{-2})(Va)}^{MOX} = L_{(Pu^{+3},Pu^{+4})(Va)(Va)}^{MOX} = +9781.9 + 3.06205T$
$G_{(U^{+4})(O^{-2})(O^{-2})}^{(U^{+4})(O^{-2})(O^{-2})} = G_{UO_2}^{UO_2} + G_O^{UO_2}$	$+(y_{Pu^{+3}}-y_{Pu^{+4}})(-17507.47+5.46573T)$
$G_{(U^{+5})(O^{-2})(O^{-2})}^{(MOA)} = G_{(U^{+5})(O^{-2})(Va)}^{(MOA)} + G_{O}^{Sub}$	$L_{(U^{+4},Pu^{+4})(O^{-2})(Va)}^{MOX} = -20000$
$G_{(U^{+3})(Va)(O^{-2})}^{MOX} - H_U^{SER} - H_O^{SER} = G_{(U^{+4})(Va)(O^{-2})}^{MOX} - H_U^{SER} - H_O^{SER}$	$L_{(U^{+4}Pu^{+3})(Q^{-2})(Va)}^{MOX} = -150000$
$=G_{(U^{+5})(Va)(O^{-2})}^{MOX} - H_U^{SER} - H_O^{SER} = +100000$	$L_{(U^{+3},Pu^{+4})(O^{-2})(Va)}^{MOX} = + 20000$
$L_{(U^{+4}, U^{+5})(O^{-2})(O^{-2})}^{MOX} = -124936.9 - 21.6838T$	$L_{(U^{+4},Pu^{+3})(Va)(Va)}^{MOX} = -300000$
$L_{(U^{+3}, U^{+4})(O^{-2})(Va)}^{MOX} = +40133.7 + 1076.4(y_{U^{+3}} - y_{U^{+4}})$	$L_{(Pu^{+4}, U^{+5})(O^{-2})(*)}^{MOX} = -80000$

U-0

U-Pu-O

DE LA RECHERCHE À L'INDUSTRIE

Nuclear Energy Agency

41 Elements

BETTER POLICIES FOR BETTER LIVES

www.oecd-nea.org/science/taf-id/ (Canada, France, Japan, The

Netherlands, Korea, UK, USA)

206 Binaries

NEA

NUCLEAR ENERGY AGENCY

TAF-ID : Thermody	rAF-ID : Thermodynamics of Advanced Fuels - International Database		
Home Introduction Elements Assessed binary systems Assessed ternary systems Higher order systems Higher order systems Systems with Ag, Al, Am, Ar B, Ba, C, Ca, Ce, Cr, Cs, Fe, Gd, H, He, I, La, Mg, Mo, N, Nb, Nd, Ni, Np, O, Pd, Pu, Re, Rh, Ru, Si, Sr Ta, Tc, Te, Th, Ti, U, V, W, Zr Periodic table Periodic table	Nodels Phases Systems Binary systems described by the database The phase diagrams calculated at 10 ⁵ Pa for the different assessed binary systems can be displayed thanks to the following list. Ag-1* Ag-0* Ag-1* Ag-2 Al-Ca Al-Fe Al-Fe Al-Fe Al-Fe B-C B-Cr B-Fe Bland Ba-1 Ba-1 B-C B-Cr B-Fe B.H B-1 B-1 B-1 B-C B-Cr B-Fe B-H B-1 C-1 C-1 C-1	Home Introduction Models Phases Systems Elements Assessed binary systems Assessed ternary systems Ternary systems Higher order systems Systems with Ag, Al, Am, Ar, B, Ba, C, Ca, Ce, Cr, Cs, Fe, Cd, H, He, T, La, Mg, Mo, N, Nb, Nd, Ni, Np, O, Pd, Puu, Re, Rh, Ru, Si, Sr, Ta, T, Ci, Te, Th, Ti, U, V, W, Zr Ternary systems Ternary Systems Periodic table Ternary Systems Ba-Moo Da-OU Ba-OZr Hordo U-N-TI C-N-U C-O-Pu C-O-U C-Pu-U C-Pu-W C-Re-U C-Re-W C-SI-U C-SI-U C-U-W C-I-Zr Ca-SI-U Ca-SI-Zr Ca-SI-U Ca-O-Zr Ca-O-U Mo-O-U Mo-O-D Mo-O-D Mo-O-D Mo-O-Zr Mo-O-U Mo-O-D Mo-O-Zr Mo-O-U Mo-O-Zr Mo-O-U Mo-O-D Mo-O-Zr Mo-O-U Mo-O-Zr Mo-O-U Mo-O-Zr Mo-O-U Mo-O-Zr Ca-O-U Mo-O-D Mo-O-Zr Mo-O-U Mo-O-Zr Mo-D-Zr Mo-O-Zr Mo-O-Zr Mo-O-Zr Mo-O-Zr MO-Zr	

TDB

Calculations on irradiated MOX fuel

PREDICTION OF OXYGEN POTENTIAL

Calculation for a MOX fuel with burnups of 3.8, 7 and 11.2 at .% ⇒ 16 Fission Products (Nd,La,Gd,He,Ce,I,Zr,Cs,Sr,Ba,Te,Mo,Pd,Ru,Tc,Rh)

(U⁺³,U⁺⁴,U⁺⁵,Pu⁺³,Pu⁺⁴,Zr⁺²,Zr⁺⁴,Ce⁺³,Ce⁺⁴,Gd⁺³,La⁺³,Nd⁺³)(O⁻²,Va)₂(O⁻²,Va)

Calculations on irradiated MOX fuel

FORMATION OF SECONDARY FISSION PRODUCT PHASES FOR A 7 at. % BURNUP

Conclusion

 Thermodynamic modelling of nuclear fuels is required to provide key input thermodynamic and phase diagram data for Fuel Performance Codes

⇒ Oxygen potential, fission product phases (JOG/ROG formation), solid/liquid transitions, heat capacity

CALPHAD is a suitable method to model multi-component systems by extrapolating from binary and ternary sub-systems;
⇒ It is time consuming ⇒ International collaborative projects are good frameworks to develop large databases
⇒ Experimental thermodynamic measurements on fuels are challenging but needed to test the validity of the databases (Phase 2 of TAF-ID project)

⇒ First-principle calculations are useful to calculate thermodynamic data that can be used in the models

But thermodynamics (alone) cannot explain the fuel behaviour; it has to be coupled with kinetic and mass transfer models

⇒ In the GERMINAL fuel performance code, there is a coupling using the open source code Open Calphad (developped by Bo Sundman) and the TAF-ID database

- Other Gibbs energy minimizer codes exist such as FACTSAGE, PANDAT, PyCALPHAD ... ⇒ The format of the database can differ; in some cases a conversion of the database file is required (for instance from Thermo-Calc to FACTSAGE format);
 - ⇒ All the sublattice models are not implemeted in all the codes

TAF-ID website: <u>https://www.oecd-nea.org/science/taf-id/</u>

A public version is available ⇒ contact person: davide.costa@oecd.org