

UNCLASSIFIED

Gen IV advanced fuel fabrication routes (Part II)

Fuels for Na-cooled fast reactors

Romain VAUCHY

PHENIX prototypic SFR reactor, Marcoule, France

13 May, 2019

Delft – The Netherlands

www.cea.fr

Introduction – Gen IV fuels (SFRs)

What is it?

Uranium-Plutonium mixed oxide: U_{1-y}Pu_yO_{2-x}

Why?

Use of Pu bearing nuclear fuel: reprocessing strategies

How to burn Pu? Where?

In France : from 1987: Use of MOX fuels in 22 plant units of 900 MWe EdF reactors (LWRs), with about 30 % MOX assemblies

Up to 2007: Management with "hybrid" mode (three-batch reload for MOX fuels whereas four-batch reload for UO_2 fuels)

From 2007: MOX parity program (four-batch reload for MOX and UO_2 fuels, up to 52 GWd/t)

In the future : more Pu to burn \rightarrow Pu ex-MOX \rightarrow GenIV \rightarrow SFRs

Introduction – Manufacturing restrictions

- General radiation protection (radioprotection) control
- Criticality problems

DE LA RECHERCHE À L'INDUSTR

- Cleanliness of the facilities and protection of the environment
- Strict control and accountability of the fissile material
- > Operations in tight containments up to the stage of the welded rod
- > Atmospheric surveillance with alarm and detection systems
- > Limit workers exposure to γ rays and neutrons
- Increased protection against the criticality risk: limitation of the unit masses used, suitable equipment geometry and limitation of the moderating materials
- Suppression or reduction of operator presence near the equipment through state-of-the art mechanization, by limiting the interventions to maintenance and repair operations.

Fuel without MAs → Fuel for SFRs (PHENIX, SUPERPHENIX, ASTRID, …)

Fuel with MAs (Am, Np, Cm) \rightarrow Fuel for transmutation (GEN IV)

Heterogeneous Recycling: U, Pu and MA in separated way \rightarrow Solid solution or Composite with high MA contents (from 10 to 20 %)

Homogeneous Recycling: U, Pu, MA recycling \rightarrow Solid solution with low MA contents (from 2 to 5 %)

Manufacturing of SFR fuels

DE LA RECHERCHE À L'INDUSTRI

Available online at www.sciencedirect.com

ScienceDirect

Ceramics International 40 (2014) 10991-10999

www.elsevier.com/locate/ceramint

Ceramic processing of uranium-plutonium mixed oxide fuels $(U_{1-y}Pu_y)O_2$ with high plutonium content

Romain Vauchy^{a,b}, Anne-Charlotte Robisson^{a,*}, Fabienne Audubert^a, Fiqiri Hodaj^b

^aCEA, DEN, DEC, SPUA, Cadarache F-13108 Saint-Paul-Lez-Durance, France ^bScience et Ingénierie des Matériaux et Procédés (SIMaP, associé au CNRS UMR 5266—UJF/INP-Grenoble), Domaine Universitaire, 1130 rue de la piscine, BP 75, F-38402 Saint Martin d'Hères, France

> Received 29 January 2014; received in revised form 14 March 2014; accepted 20 March 2014 Available online 26 March 2014

Abstract

The ternary thermodynamic U–Pu–O system has been studied for decades for MOX fuel applications but the phase diagram is still not precisely described mostly in the UO_2 –Pu O_2 –Pu $_2O_3$ sub-system. Furthermore, uranium–plutonium mixed oxides containing high amounts of plutonium are now being considered within the scope of future nuclear reactors. Within this framework, obtaining homogeneous mixed oxides by powder metallurgy is paramount. The studied process is based on UO_2 and PuO_2 co-milling and applied to compounds with high Pu content. The objective of this study is obtaining microstructures free of local heterogeneities in the U–Pu distribution which are not suitable for research studies. Furthermore, in case of prospective irradiation application, local high Pu concentrations lead to "hot spots" in the material influencing the fission gas release behaviour such as the thermal conductivity which may raise a number of safety issues.

This study describes the effect of some fabrication parameters on the powder morphology and/or, on the final microstructure (*e.g.* U–Pu distribution). The co-milling, sieving and sintering steps were investigated within this scope and the resulting powders and pellets were characterised by X-ray diffraction (XRD) and optical microscopy observations, respectively. © 2014 Published by Elsevier Ltd and Techna Group S.r.l.

Reproduction and distribution are forbidden without prior agreement from the author

Manufacturing of SFR fuels - specifications

Main specifications

Fabrication process

- Manufacturing devices similar to those used for PWR fuels
 - Co-milling with ball mill (uranium-titanium low-alloy balls)
 - Forced sieving \rightarrow pushing through grids (250 μ m)
 - Additives
 - Pelletizing → 500 Mpa
 - Sintering

Cea Manufacturing of SFR fuels – powder metallurgy process

Fabrication process

Developed up to 1995 at CFCa* (30 years) as fast reactors fuels Direct **co-milling** (co-granulation) of UO₂ and PuO₂ (called **COCA process**)

* Complexe de Fabrication de CAdarache (COGEMA)

Reproduction and distribution are forbidden without prior agreement from the author

A Manufacturing of SFR fuels – comparison with MIMAS

MIMAS Process (MIcronization of MASter blend)

Industrial process used at MELOX

Manufacturing of SFR fuels – comparison with MIMAS

Credit : Orano

Reproduction and distribution are forbidden without prior agreement from the author

Reproduction and distribution are forbidden without prior agreement from the author

Reproduction and distribution are forbidden without prior agreement from the author

cea

Manufacturing of SFR fuels – processing tools

Mixer

- Rotary speed
- Time
- Powder mass
- Tank volume

- U, J, K, C parameters
 - Powder mass
 - Powder density
 - Ball size
 - Ball mass
 - Tank volume
- Rotary speed
- Nb tilts
- Duration
- Emptying type

- Powder mass
- Lubrification
- Die size
- Applied pressure
- Transmitted pressure
- Ejection speed

Sintering furnace

- Thermal profil
- Atmosphere
 - pO₂
 - flow

Manufacturing of SFR fuel – characterization techniques

Powder density determination

TGA

C/S and O/N analysis

Metrology

Dilatometer

XRD & HT-XRD

Ceramography

Reproduction and distribution are forbidden without prior agreement from the author

Specific facilities : α-laboratory

LEFCA lab ball mill

Specific facilities : α-laboratory

MELOX press (10 punches)

Specific facilities : α-laboratory

LEFCA lab sintering furnace

Reproduction and distribution are forbidden without prior agreement from the author

Ceal Specific facilities : α-laboratory

Green pellets

Sintered pellets

Cea

Manufacturing of SFR fuels - sintering

Sintering

- High Pu content and lower O/M ratio \rightarrow challenging
- **Definition** pH_2/pH_2O to control O/M ratio

- Densification
- Formation of solid solution
- Control of O/M ratio

Reproduction and distribution are forbidden without prior agreement from the author

Manufacturing of SFR fuels - sintering

Sintering

- Physics : increase in temperature \rightarrow ceram. proc. densification + formation of solid solution
- Chemistry: Red/Ox enhanced process
- Exemple : UO₂, PuO₂ and U_{1-y}Pu_yO₂ \rightarrow *fcc* phase (fluorite, CaF₂ type, Fm₃m, s.g. 225)

Vauchy et al., JNM, 465, 2015, 349-357

Manufacturing of SFR fuels - sintering

Sintering

Red/Ox enhanced process

Reproduction and distribution are forbidden without prior agreement from the author

Manufacturing of SFR fuels – sintering

S. Mendez, PhD thesis, 1995

Reproduction and distribution are forbidden without prior agreement from the author

Manufacturing of SFR fuels – sintering

Reproduction and distribution are forbidden without prior agreement from the author

Thermodynamics

Sari et al., Journal of Nuclear Materials 35 (1970) 267-77

2 x f.c.c. phases 2 x f.c.c. + b.c.c. phases f.c.c. + b.c.c. phases

Reproduction and distribution are forbidden without prior agreement from the author

Experiment vs. Modeling

- Generally : experiment and modeling in good agreement
- Same low Pu content limit for the miscibility gap (~17% Pu)
- Some differences :
 - > Biphasic domain $MO_{2-x} + M_2O_3$ not modeled
 - > Existence of a three-phases domain $2 \times MO_{2-x} + M_2O_3$

Calculated composition range far from the hatched area of Sari

High Pu content : microstructures & O/M ratios

DE LA RECHERCHE À L'INDUSTRIE

High Pu content : microstructures & O/M ratios

Reproduction and distribution are forbidden without prior agreement from the author

Cea

UO_2 -Pu O_2 -Pu $_2O_3$ at HT

dden without prior agreement from the autnor

cea

UO_2 -Pu O_2 -Pu $_2O_3$ at HT

Experimental temperatures of phase separation (DTA, HT-XRD) → Entering in the miscibility gap

- T increases with Pu content
- Low Pu : only DTA results → scattering confirms the difficulties in measuring at low Pu content
- High Pu : T obtained with DTA lower than with HT-XRD
- PuO₂ : HT-XRD value (1000 K) in agreement with description of Pu-O

Very few experimental results

cea

Experiment vs. Modeling

Markin & Street. Journal of Inorganical Nuclear Chemistry 29 (1967) 2265-2280

Guéneau et al. Journal of Nuclear Materials 419 (2011) 145-167

- Experiment and calculations agree for $y \le 0.40$
- Difference for y > 0.40 : calculations overestimate T_{separation}

New HT studies are required to better describe the phase separation phenomenon

Conclusions

Conclusions

- Main specifications :
 - ✓ Pu content > 20 % (about 30%)
 - ✓ 1.94 < Oxygen/Metal ratio < 2.00
 - ✓ Dense pellets (95% D_{th})
- Fabrication by powder metallurgy :
 - ✓ Direct co-milling of UO_2 + PuO_2
 - ✓ Sintering : key step → densification + formation of solid solution + control of O/M ratio

Challenging because of high Pu content and O/M specifications

At high Pu content : possible demixtion (phase separation) during cooling step (sintering)

The higher the Pu content, the more difficult the control of O/M ratio

Thursday 16/05 16h00-16h30→ case studies: mixed oxide fuels in fast reactors

Assemblies and capsules

SFR assemblies

SFR assemblies

Reproduction and distribution are forbidden without prior agreement from the author

SFR capsules

Reproduction and distribution are forbidden without prior agreement from the author

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Marcoule | 30207 Bagnols-sur-Cèze T. +33 (0)4.66.79.53.54 Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019 Nuclear Energy Division Research Department on Mining and Fuel Recycling Processes Department of Process Engineering of Actinide Materials Manufacturing

Cea MA-bearing oxide fuel

DE LA RECHERCHE À L'INDUSTRI

Objectives

Reducing quantity and radiotoxicity of long life MA (Am, Np, Cm)

Demonstrating transmutation feasibility into FR

Reactors

HFR – Netherlands (analytical tests)

BOR 60 – Russia

Phenix – France

(innovative options and validation tests)

Selected concepts

Homogeneous recycling:

ightarrow Solid solution with low MA contents (from 2 to 5 %)

Heterogeneous recycling:

 \rightarrow Solid solution or Composite with high MA contents (from 10 to 20 %)

- European programs since 1991: transmutation of Am in uranium-free targets
- In-pile and out-pile studies on a lot of matrices
- Focus on two materials: MgO and (Zr,Y)O₂ as inert matrices (composite materials)

Impact of MA on the fabrication process

Neutron and gamma activity Appropriate radioprotections

1g 241 AmO₂ powder \rightarrow 10 rad/h (gamma) 1g 244 CmO₂ powder \rightarrow 300 rad/h (gamma)

- Heavily shielded cells, thick concrete;
- Water shields (neutron Cm);
- Remote handling for all operations.

Contamination and dispersion Precursor handling/batch preparation

- Powder metallurgy using separated oxide powder;
- Generation of fine and dust dispersion;
- High contamination level.

Direct synthesis particles containing the MA's (co-conversion, solution infiltration)

Thermal behaviour of the batch and pellet

- Curium heat released (2.8 W/g);
- Significant increase of batch and pellets temperature;
- Lubrication properties lost of pressing additives.

Impact of MA on the fabrication process

Powder pressing

- Use of organic lubricants difficult;
- MA fuels loose of lubrication properties rather quickly (radiolysis);
- Mechanical instability and swelling of green pellets during storage

Development of press dies

ATALANTE example: ejection free matrix device (three parts dies)

Cladding and storage

- Forced cooling necessary during all operation and for storage;
- Transport of pin at a reasonable T.

Objective : simple and reliable process limiting scraps and machining

MA-bearing oxide fuel – Solid solution

Solid solution

- Fabrication of Am-bearing ceramics oxides
- Handling of highly radioactive americium \rightarrow development of new technologies

Example: Am_{0.06}Zr_{0.78}Y_{0.16}O_{1.89}

Cea MA-bearing oxide fuel - Composite

Composite materials

Inert matrix	Actinide phase
MgO, MgAl ₂ O ₄ , ZrO ₂ , Ln ₂ Zr ₂ O ₇	AmO_x , $(Am,Zr)O_x$, $Am_2Zr_2O_7$
CeO ₂ , Y ₂ O ₃ , Y ₃ A ₁₅ O ₁₂	(Am,Zr,Y)O _x
TiN, ZrN, CeN	(Pu,Am,Zr)N
W, V, Cr, Nb	

Two model microstructures (to evaluate matrix damage by recoil of FP and alpha particles)

- macro dispersion \rightarrow Grain size = 50-200 μ m
- micro dispersion \rightarrow Grain size < 50 μ m

Reproduction and distribution are forbidden without prior agreeme

MA-bearing oxide fuel - Composite

Example: microdispersed heterogeneous target

MgO (microdispersed) + AmO_2 (grain size between 1 and 50 μ m)

Classical powder metallurgy process

From Croixmarie et al. (2003)

Cea MA-bearing oxide fuel - Composite

Example: micro and macrodispersed heterogeneous target

MgO + (Am,Y,Zr) O_{2-x}

- \rightarrow Microdispersion in MgO: (Am,Y,Zr)O_{2-x} grain size between 30 and 50 µm
- \rightarrow Macrodispersion in MgO: (Am,Y,Zr)O_{2-x} grain size between 90 and 130 µm

Reproduction and distribution are forbidden without prior agreement from the author

In progress

Favour He release during irradiation by creating FG release paths: interconnected and stable under irradiation porosity = new microstructure with high open porosity content

by increasing operating temperature by Pu introduction: (Pu,Am)O₂ + Inert Matrix

- Increase transmutation capacity: increase Am content
- **Introduce Cm**: technological stake
- Progress on composite materials: new irradiation tests in progress to study and qualify the MABB concept: 10-20% MA on UO₂

Fuel candidate selection

Potential fuel compositions, forms and packing:

- Composition : oxide, metal, nitride, carbide, ...
- Form: solid solution, composite

History

DE LA RECHERCHE À L'INDUSTRI

Large experience achieved in the past in many countries France, UK, USA, Japan, Russia, ...

New studies in France since 2005

Synthesis by carbothermic reduction

- Milling of oxide powders and graphite carbon
- Pelletizing
- Reaction under vacuum

 $(1-x)UO_2 + xPuO_2 + 3C \rightarrow U_{1-x}Pu_xC + 2CO$

Mechanisms study (A. Handschuh, Thesis, Université de Lille (2010))

• Step 1: Reduction of UO_{2+x} (700-1200°C) (1-x) $UO_{2,03}$ + xPuO₂ + C \rightarrow (1-x) UO_2 + xPuO_{2-y} + CO₂

• Step 2: Carbothermic reaction (>1200°C) (1-x)UO₂ + xPuO_{2-y} + C \rightarrow U_{1-z}Pu_zC + U_{1-a}Pu_aC_{1.5} + CO + Pu(g)

> Formation of (U,Pu)C and $(U,Pu)_2C_3$

Thermodynamic considerations / Specifications

Equilibrium between (U,Pu)C and $(U,Pu)_2C_3 \rightarrow \text{from 5 to 10 \% } (U,Pu)_2C_3$

Oxygen solubility \rightarrow (U,Pu) oxycarbide \rightarrow oxygen content < 1000 – 3000 ppm

Reproduction and distribution are forbidden without prior agreement from the author

DE LA RECHERCHE À L'INDUSTR

Sintering under controlled atmosphere or under vacuum

Occurrence of $(U,Pu)_2C_3 \rightarrow$ inhibit grain growth, favour sintering Occurrence of $(U,Pu)(C,O) \rightarrow$ inhibit grain growth and densification Use of Ni as sintering additive: liquid sintering at 1650 – 1850°C \rightarrow Increase of densification rate \rightarrow Decrease of oxygen content

Density of sintered carbide depends on:

- Sintering T and t
- Specific surface area of carbide powder
- Binding agents
- Sintering agents (like Ni)
- Oxygen content of the carbide powder

Pu volatilisation

Vapour pressure of Pu(g) >> Vapour pressure of uranium and of carbon

Mixed carbide incongruent sublimation \rightarrow formation of Pu(g), PuO(g) and CO(g)

DE LA RECHERCHE À L'INDUSTR

Specifications for optimized carbide pellets (GFR)

Low density (80 - 85 % TD) ⇔ swelling management Open porosity ⇔ reduce fission gas release Stable porosity ⇔ avoid high densification at BOL Low oxygen content (< 1000 ppm) and M₂C₃: 5 – 10 %⇔ reduce swelling rate Ability to incorporate MA

→ Loss during sintering ⇔ issue with carbide
Pyrophoricity to be taken into account

Main stakes

- Stringent management of oxygen pollution (pO₂ and moisture)
- Improve powder homogeneity
- Control and reduce Pu (and Am) volatilisation
- Reduce the number of steps

Nitride fuel

Context

French CEA program started in 1985 (Bernard, 1989) Many similarities with carbide

Two main drawbacks of nitride

➢ Neutron capture on ¹⁴N

- → Deleterious effect on the neutron balance
- → production of ${}^{14}C$ → Need for enrichment of N
- > Instability at high temperature

Thermodynamic considerations (Agarwal et al., 1999)

In presence of carbon and oxygen impurities,

(U,Pu)N in equilibrium with $(U,Pu)_2N_3$ and in equilibrium with $(U,Pu)O_2$

Calculated thermodynamic properties:

 $(U,Pu)N \Leftrightarrow (U,Pu)O_2$ will be superior to the one with $(U,Pu)_2N_3$

A Nitride fuel

DE LA RECHERCHE À L'INDUSTR

Fabrication process (Bernard, 1989)

in an industrial and conventional oxide line

= Carbothermic reduction and consolidation by cold pressing

- ① Ball-milling of the oxides
- ② Blending carbon powder
- ③ Pressing into coarse briquettes
- ④ Carbothermic reduction in N_2 then in N_2 -6% H_2 at 1550°C:

$$N_2$$
(1-x)UO₂ + xPuO₂ + (2+y)C → (U_{1-x}Pu_x)_N + 2CO + yC

- (5) Crushing and grinding the clinkers
- 6 Pelletizing with pore former
- ⑦ Sintering at 1725°C under reducing atmosphere (at 1650°C in vacuum)
 - \rightarrow Sintered density: 80 90 % theoretical density
 - \rightarrow Low and controlled level of residual oxygen and carbon contents

Metallic fuel UPuZr

- Considered is the main alternative to oxide in many countries (USA, Japan, Korea, India)
- Large experience mainly in USA (irradiation into EBR II, Idaho falls)
- Experience under progress of metallic fuel with MA: (U,Pu,Zr) + Np, Am and Cm
- Fabrication in the form of metallic rods:
 - \rightarrow melting in a crucible
 - \rightarrow casting in quartz tubes by injection

CE2 R&D on new fuels - Summary

DE LA RECHERCHE À L'INDUSTRI

Reproduction and distribution are forbidden without prior agreement from the author