

Criteria for fuel materials

- ✓ Low neutron capture cross section of non-fissile elements
- ✓ High fissile density
- No chemical reaction with cladding or coolant
- Favorable physical properties, especially thermal conductivity and melting point (*together give the margin to melting*)
- ✓ High mechanical stability (*isotropic* expansion, stable against radiation)
- ✓ High thermal stability (no phase transitions, no dissociation)

Summary of designs for generation IV reactors

System	Neutron spectrum	Fuel cycle	Fuel (+MA)	Fuel form	Coolant
Very-high- temperature reactor (VHTR)	Thermal	Open	UO ₂ ,UCO PuO ₂ (Zr,Y,Pu)O ₂	Coated particle	Helium
Sodium-cooled fast reactor (SFR)	Fast	Closed	(U,Pu)O ₂ MC/MN Targets	Pellet (Sphere Pac)	Sodium
Supercritical-water- cooled reactor (SCWR)	Thermal or fast	Open or closed	UO ₂ , (U,Pu)O ₂ (U,Th)O ₂	Pellet	Water
Gas-cooled fast reactor (GFR)	Fast	Closed	MC, MN/ (U,Pu)O ₂	Disk	Helium
Lead-cooled fast reactor (LFR)	Fast	Closed	(U,Pu)O ₂ MN	Pellet (Sphere Pac)	Lead
Molten-salt reactor (MSR)	Fast or thermal	Closed	LiF-ThF ₄ -UF ₄	Fluid	Fluoride or chloride salts

Oxide fuels for GenIV reactors

Advantages

✓ Technology already demonstrated!

- ✓ Fabrication is simple, with less no. of process steps
- ✓ Good chemical stability
- ✓ Can accommodate MA in their structure
- ✓ High melting point
- ✓ Satisfactory chemical compatibility with coolant and cladding materials
- ✓ Industrial-scale experience in oxide spent fuel reprocessing

Oxide fuels for GenIV reactors

Challenges

- ✓ Low thermal conductivity, decreasing with temperature, Pu-content and decreases of pellet density
- Mechanical pressing and sintering needed
- ✓ Control of oxygen stoichiometry (difficult at high Pu-content and temperature)
- Accommodation of helium and fission gasses difficult
- Radiological issues already from the fabrication stage

Sources of fissile/fertile isotopes

Powder to pellet routes towards UO₂ and mixed oxide fuels

✓ Thorium

- ✓ Uranium
- ✓ Plutonium
- ✓ Minor actinides

Focus on powder preparation:

- \succ grain size \rightarrow ease of **sintering**
- ➤ shape → less defects
- ➤ agglomeration → high packing density
- \succ chemical composition \rightarrow high purity

Thorium – front end cycle

- highly reactive and electropositive primordial chemical element
- estimated to be over three times as abundant as uranium in the Earth's crust
- virtually monoisotopic, ²³²Th, has a half-life of 14.05 billion years, or about the age of the universe
- chemistry is dominated by the +4 oxidation state
- ✓ soluble in concentrated nitric acid (with HF)
- ✓ ThO₂ forms full solid solution with UO₂ and PuO₂

PITCH BLEND XUO₂, YUO₂ ORE DRESSING URANIUM SLURRY CHEMICAL PROCESSING Na₂U₂O₇+MgU₂O₇ DISSOLUTION IN HNO3 SOLVENT EXTRACTION with TBP $UO_2(NO_3)_2$ NH₄OH UO₂, Pellets and Fuel Assembly PRECIPITATE (NH₄)₂U₂O₇ CALCINATION UO, REDUCTION UO2 9

Uranium – front end cycle

Uranium – front end cycle

Uranium is stable as U(VI) in aqueous solution. Electroreduction to U(IV) is not suited at industrial scale, so the oxalate precipitation is not a choice. Several options:

Preparation of ceramic grade UO₂ powder

- All start from UF_6 and end with reduction to UO_2 with H_2

Preparation of ceramic grade UO₂ powder

	IDR	ADU	AUC
Specific surface (m ² /g)	2.5-3.0	2.8-3.2	5.0-6.0
Raw density (g/cm ³)	0.7	1.5	2.0-2.3
Tap density (g/cm ³)	1.65	2.4-2.8	2.6-3.0
Mean size (microns)	2.4	0.4-1.0	8
Morphology	dendrites	spheroids	Porous aggl.
O/U ratio	2.05	2.03-2.17	2.06
Fluor (ppm)	<25	30-50	30-70
Carbon (ppm)	20	40-200	120
Iron (ppm)	10	70	10-20
Boron (ppm)	<0.05	0.2	0.1

Nuclear fuel cycle

Commission

Nuclear fuel cycle – source of fissile/fertile isotopes

Source of Pu and minor actinides (MA) – activation process of the fuel (neutron capture)

Plutonium chemistry

Plutonium presents different oxidation states in aqueous solution. Pu(IV) can be stabilised in 4M HNO_3 .

Pu(IV) is precipitated as oxalate and thermally decomposed to submicrometric PuO₂.

Reprocessing of spent nuclear fuel (PUREX)

Reprocessing of spent nuclear fuel (COEX)

- COEXTM process evolved from PUREX process, to produce a U + Pu mixture (U/Pu > 20%),
- to curb proliferation risks
- perfectly homogeneous mixed oxide for MOX fuel fabrication with \succ enhanced performance.

Commission

Co-precipitation methods

Parameters to be controlled for co-precipitation:

- Feed solution concentration adjustment
- precipitant concentration and addition methods
- > pH, temperature, mixing method and time
- valence adjustment
- solid precipitation separation from the filtrate mother liqueur
- temperature and time for drying, calcination and reduction of powder

The **3 coprecipitation processes** considered for evaluation are:

- **ammonia** coprecipitation (Russia)
- oxalate coprecipitation (France)
- **ammonium-uranyl-plutonyl-carbonate**, AUPuC (Germany)

+ other **direct denitration** processes

Mixed oxide fuel fabrication methods

co-extraction

traditional

Advanced fabrication processes for ceramic nuclear fuels

- ✓ Oxalate decomposition under hot compressed water process (oxides)
- ✓ Citrate gel process (carbides)
- ✓ Molecular approach: from MOF to carbides (carbides)
- ✓ Sol-gel based processes for fuel manufacturing (oxides, carbides, nitrides)
 - vibro-sol (sphere-pac)
 - sol-gel microsphere pelletisation

Decomposition of oxalates under hot compressed water

The dry oxalate decomposition:

- J.F. Facer, Jr., K.M. Harmon, Precipitation of Pu(IV) oxalate, HW-31186, 1954.
- A. Porter and A. E. Symonds, Precipitation of plutonium(III) oxalate and calcination to plutonium dioxide, DP-981, 1965.

The wet oxalate decomposition:

O. Walter, K. Popa, O. Dieste Blanco, Hydrothermal decomposition of actinide(IV) oxalates: a new aqueous route towards reactive actinide oxide nanocrystals, *Open Chem.* **14** (2016) 170–174.

AnO₂ and s.s. production under HCW

Hot compressed water (HCW): here pressured water > 95 °C

Dry/wet decomposition of An^{IV} oxalates

$An(NO_3)_4 + 2 H_2C_2O_4 + nH_2O \rightarrow An(C_2O_4)_2 \cdot nH_2O \rightarrow AnO_2$

- + low temperature
- + small nanocrystals
- + simple and versatile
- + close to quantitative
- + scale-up possible
- powders difficult to sinter

++ even lower temperature

- ++ even smaller NC's
- + simple and versatile
- + close to quantitative
- + scale-up possible
- + sinterable powders

Oxide	Colour	Reaction conditions	Lattice parameter, Å	Particle size from XRD, nm
ThO ₂	white	4-24 h, 250-300 °C	5.604-5.610	5-7
$UO_{2(+x)}$	black	30 min - 24 h, 160-300 °C	5.455-5.470	5-13
NpO ₂	beige	18 h, 170-200 °C	5.431-5.433	5-10
PuO ₂	green	4 days, 95 °C	5.397	3.7(1.0)

The role of the water in the hydrothermal decomposition of the oxalates

 $Th(C_{2}^{16}O_{4})_{2} \cdot 2H_{2}(^{16}O) + H_{2}(^{17}O) \rightarrow Th(^{16,17}O)_{2} + 2C(^{16,17}O) + 2C(^{16,17}O)_{2} + 3H_{2}(^{16,17}O)$

(¹⁶O) - (¹⁷O) shift in the Raman spectrum

- ▶ [FWHM $(T_{2q}) = 11 \pm 2 \text{ cm}^{-1} \rightarrow \text{almost full substitution}]$
- NMR active (presence of (¹⁷O) in the sample)

An-oxalate \longrightarrow nc-AnO₂

K. Popa, O. Walter, O. Dieste Blanco, A. Guiot, D. Bouëxière, L. Martel, M. Naji, J.-Y. Colle, D. Manara, "A low-temperature synthesis method for AnO_2 nanocrystals (An = Th, U, Np, Pu) and associate solid solutions", *CrystEngComm* **20** (2018) 4614-4622

N. Vigier, S. Grandjean, B. Arab-Chapelet, F. Abraham, "Reaction mechanisms of the thermal conversion of Pu(IV) oxalate into plutonium oxide", *J. Alloys Compd.* **444-445** (2017) 594-597

HT XRD measurements

Different effects:

- ✓ thermal expansion
- ✓ crystallite growth
- ✓ phase transition

increasing T \rightarrow increasing size sintering ability: Ce > U > Pu > Np > Th

nc-(U,Th)O₂ production by hydrothermal decomposition of mixed oxalates under HCW

L. Balice, D. Bouëxière, M. Cologna, A. Cambriani, J.-F. Vigier, E. De Bona, D.G. Sorarù, C. Kübel, O. Walter, K. Popa, "Nano and micro $U_{1-x}Th_xO_2$ solid solutions: from powders to pellets", *J. Nucl. Mater.* **498** (2018) 307-313

SPS sintering behaviour of *nc*-U_{1-x}Th_xO₂ (*Masters Luca Balice*)

nc-(U,Pu)O_{2(±y)} production (PhD Guilhem Kauric)

Multicomponent mixed oxides production by hydrothermal decomposition of oxalates under HCW

Composition	Reaction conditions	a, Å	d, nm	Colour
Th _{0.70} U _{0.15} Np _{0.15} O ₂	18 h/ 200 °C	5.530	7.0 ± 2.5 (XRD)	brown
Th _{0.45} U _{0.10} Pu _{0.45} O ₂	18 h/ 200 °C	5.450	8.5 ± 2.0 (XRD)	grey
		5.522	6.2 ± 1.1 (TEM)	
Th _{0.80} Pu _{0.20} O ₂	18 h/ 200 °C	5.510	6.8 ± 0.9 (XRD)	pale green
		5.583	4.1 ± 0.5 (TEM)	
Np _{0.33} Pu _{0.67} O ₂	18 h/ 200 °C	5.411	8.4 ± 1.6 (XRD)	light grey
Th _{0.60} Np _{0.20} Pu _{0.20} O ₂	18 h/ 200 °C	5.520	5.0 ± 1.1 (XRD)	light green

An oxidation state

K. Kvashnina, K. Popa, O. Walter *unpublished results*

Separate effect study (PhD Emanuele de Bona)

conventional SPS representative of freshly sintered nuclear fuel

Two step SPS High Burnup Structure (pore formers needed) High pressure SPS nanometric grains separate effect studies

Separate effect study (PhD Emanuele de Bona)

The High Burnup Structure

Microstructural reorganisation during operation:

5-10 µm grains ~ 300 nm grains + Micrometric pores

Separate effect study

Microstructure

Porosity

Thermal properties

Mechanical properties

He behaviour Rad. damage resistance Gases retention

Fission products (chemical composition) 37

Sintering behaviour of *nc*-ThO₂ under SPS

- FAST: field assisted sintering technique
- Application of a pulsing direct current through graphite dies
- Application of pressure up to 100 MPa for graphite assembly
- consolidation into dense pellets (>90% TD) obtained at low temperatures and in a short time

39

Non-oxide ceramic fuels - nitrides

Nitride fuels refers to a family of several ceramic materials: UN, U_2N_3 and UN_2 . Similar (U,Pu)N_x exists

Advantages:

- ✓ safer, stronger, denser
- more thermally conductive
- higher temperature tolerance compared to oxides

Disadvantages:

- \checkmark complex conversion route from enriched UF₆,
- need to prevent oxidation during manufacturing
- large amount of ¹⁴C would be generated from the nitrogen by the (n,p) reaction
- ✓ need to define and license a final disposal route

Non-oxide ceramic fuels - nitrides

Carbothermic reduction

 $\begin{array}{l} 3UO_2 + 6C \rightarrow 2UC + UO_2 + 4CO \; (Ar, \; 1450 \; ^{\circ}C/10 \; h) \\ 4UC + \; 2UO_2 \; + 3N_2 \rightarrow 6UN \; + \; 4CO \end{array}$

Sol-gel methods

Arc melting of pure uranium under N₂ atmosphere

Ammonolysis UF_4 is exposed to ammonia gas under high pressure and temperature

Hydriding-nitriding $2U + 3H_2 \rightarrow 2UH_3 (T > 280 °C)$ $2UH_3 + 1.5N_2 \rightarrow U_2N_3 (T > 500 °C)$ $U_2N_3 \rightarrow UN + 0.5N_2 (T > 1150 °C)$

Non-oxide ceramic fuels - carbides

Carbide fuels refers to a family of several ceramic materials: UC, U_2C_3 and UC_2 . Similar $(U,Pu)C_x$ exists. Also UCO and similar (U,Pu)CO are under consideration

Advantages:

- high thermal conductivity
- high melting point
- ✓ ability to complement a ceramic coating

Disadvantages:

- ✓ complex production route
- ✓ burn in air atmosphere
- high production temp. (sintering)?

Carbides production (traditional) *Carbothermic reduction processes*

Conventional method

Direct pressing

The citrate gel method (Masters Daniele Salvato)

The citrate gel method (Masters Daniele Salvato)

- High reactivity of the starting UO₂ + C mixture (Conventional Carbothermal reduction, 1h, Ar)
- Reactive-sintering in SPS unsuccessful (CO release problems?)
- Carbothermal Reduction in SPS allowed us to synthetize UC in few minutes << several hours conventionally needed
- High sinterability of the powder produced at low temperatures (>90%TD, in few minutes)

The molecular approach: from MOF to material

Synthesis of molecular precursors with a via the molecular stoichiometry well defined U to C ratio in an already described geometry (no physical mixing, no ball milling, aso)

MOF structures (Masters Adeline Surateau)

Commission

Thermal treatment: precursors in SPS device

Molecular precursor

 $\Delta \int 1400^{\circ} C$ $UO_{2} + UC + UC_{2} + C$

BUT for the therephthalate: only NC's of UC₂

R (expect	ed)/ %:	3.44
R (profile)	/ %:	4.59
Space gro	oup (No.):	I 4/mmm
a/ Å:	3.52727(9))
c/ Å:	6.0078(3)	

From FWHM of 6 peaks Particle size: 16(2) nm

Possible to scale-up access to a pure nano crystalline UC₂ phase

Sol-gel based processes for fuel manufacturing

Vibro-sol (spherepac) process

 Preparation of sol-gel derived microspheres (50-1000 μm)

internal gelation

external gelation

- ✓ The mixed oxide gel micropheres are dried and sintered (TD≥96%)
- Subsequently packed in the cladding tube by vibratory compaction)

Sol-gel based processes for fuel manufacturing

Sol-gel microsphere pelletisation process

Sol-gel derived microspheres are directly compacted to pellets and sintered at ~1700 °C

- ➢ hard spheres → blackberry structure
- ➢ soft spheres → pellets w/o microsphere boundaries

Coated particle fuel

Fuel Kernel:

Provides fission energy (heat) Retains a great part of fission products (FP)

Buffer:

Protects main layers against FP recoil Free volume for released fission gas (FG) Accommodates Kernel swelling

Inner PyC:

Prevents Kernel corrosion by chlorine during manufacture Provides mechanical support for SiC Retains FG

SiC:

Main load bearing member Retains FG, volatile and metallic FP

Outer PyC:

Provides mechanical support for SiC Provides FP barrier for particles with defective SiC Provides bonding surface for compacting

COMPACT

Thank you for your attention!

Oxalate decomposition:

L. Balice, A. Guiot, G. Kauric, J.-F. Vigier, O. Walter

Carbides: V. Tyrpekl, *D. Salvato*, *A. Surateau*

Sintering:

E. De Bona, C. Boshoven, M. Cologna, M. Holzhäuser

Others:

H. Hein (TGA) D. Bouëxière (XRD) L. Martel (MAS-NMR) O. Dieste Blanco (TEM) B. Cremer, M. Ernstberger (SEM) A. Beck, K. Kvasnina, T. Vitova (XAS) J.-Y. Colle, D. Manara, M. Naji, S. Stohr (Raman) J. Somers, J.-P. Glatz, R.J.M. Konings (coordination)